Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
DiscrétisationEn mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.
Constante de BoltzmannLa constante de Boltzmann k (ou k) a été introduite par Ludwig Boltzmann dans sa définition de l'entropie de 1877. Le système étant à l'équilibre macroscopique, mais libre d'évoluer à l'échelle microscopique entre micro-états différents, son entropie S est donnée par : où la constante k retenue par le CODATA vaut (valeur exacte). La constante des gaz parfaits est liée à la constante de Boltzmann par la relation : (avec (valeur exacte) le nombre d'Avogadro, nombre de particules dans une mole). D'où :.
Théorie cinétique des gazLa théorie cinétique des gaz a pour objet d'expliquer le comportement macroscopique d'un gaz à partir des caractéristiques des mouvements des particules qui le composent. Elle permet notamment de donner une interprétation microscopique aux notions de : température : c'est une mesure de l'agitation des particules, plus précisément de leur énergie cinétique ; pression : la pression exercée par un gaz sur une paroi résulte des chocs des particules sur cette dernière. Elle est liée à leur quantité de mouvement.
Loi de distribution des vitesses de MaxwellEn théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition statistique des vitesses des particules dans un gaz homogène à l'équilibre thermodynamique. Les vecteurs vitesse des particules suivent une loi normale. Cette loi a été établie par James Clerk Maxwell en 1860 et confirmée ultérieurement par Ludwig Boltzmann à partir de bases physiques qui fondent la physique statistique en 1872 et 1877.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Formule de Boltzmannthumb|Sur la tombe de Ludwig Boltzmann En physique statistique, la formule de Boltzmann (1877) définit l'entropie microcanonique d'un système physique à l'équilibre macroscopique, libre d'évoluer à l'échelle microscopique entre micro-états différents. Elle s'écrit : où est la constante de Boltzmann qui est égale à . est appelé le nombre de complexions du système ou nombre de configurations.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Distribution de BoltzmannEn physique statistique, la distribution de Boltzmann prédit la fonction de distribution pour le nombre fractionnaire de particules Ni / N occupant un ensemble d'états i qui ont chacun pour énergie Ei : où est la constante de Boltzmann, T est la température (postulée comme étant définie très précisément), est la dégénérescence, ou le nombre d'états d'énergie , N est le nombre total de particules : et Z(T) est appelée fonction de partition, qui peut être considérée comme égale à : D'autre part, pour un systè