Pivignette|Si le diamètre du cercle est 1, sa circonférence est π. π (pi), appelé parfois constante d’Archimède, est un nombre représenté par la lettre grecque du même nom en minuscule (π). C’est le rapport constant de la circonférence d’un cercle à son diamètre dans un plan euclidien. On peut également le définir comme le rapport de l'aire d'un disque au carré de son rayon. Sa valeur approchée par défaut à moins de 0,5×10 près est en écriture décimale.
Papier couchéthumb|Tranche d'un papier couché.1 - papier2 - couche d'égalisation3 - couche de lissage Le papier ou carton couché est un papier ou carton dont la surface est recouverte d'une ou plusieurs couches généralement constituées de produits minéraux (pigments) en mélange avec des liants et des produits d'addition divers. Quelque 40 % des papiers impression-écriture et près de 50 % des cartons sont couchés. L'opération de couchage consiste à déposer sur une ou sur les deux faces d'une feuille de papier ou de carton — appelée support — un enduit à base de pigments fins.
PapierLe papier est un matériau en feuilles minces fabriqué à partir de fibres végétales. C'est un support d'écriture et de dessin avec de nombreuses autres applications. On appelle carton un papier épais et rigide. L'usage du papier est attesté il y a en Chine. Il s'y fabrique à partir de plantes riches en cellulose. L'invention de la xylographie au en augmente l'usage et la fabrication. À la même époque, il se diffuse dans le monde musulman, où les fabricants utilisent le chiffon, puis en Occident où on lui ajoute de la colle pour l'adapter à l'écriture à la plume.
PapeterieLe mot papeterie ou papèterie peut désigner : une usine à papier, également appelée papetière, spécialisée dans la transformation du bois, de vieux papiers, ou de pailles en papier ou d'autres fibres (chiffons) ; un magasin de fournitures de bureau ou de fournitures scolaires ; l'industrie papetière, c'est-à-dire l'industrie de fabrication du papier principalement à partir de pâte à papier ; un article de papeterie, un article fabriqué en tout ou partie avec du papier ; une petite boîte contenant le matérie
Preuve de l'irrationalité de πDans les années 1760, Johann Heinrich Lambert a été le premier à prouver que le nombre est irrationnel, c'est-à-dire qu'il ne peut pas s'écrire sous forme d'une fraction a/b, avec a et b entiers non nuls. Au , Charles Hermite établit une preuve ne reposant sur aucun prérequis au-delà de l'analyse élémentaire. Des versions simplifiées de la preuve de Hermite ont été plus tard trouvées par Mary Cartwright et Ivan Niven. Une autre preuve, une version simplifiée de celle de Lambert, est trouvée par Miklós Laczkovich.
Fermé (topologie)En mathématiques, dans un espace topologique E, un fermé est un sous-ensemble de E dont le complémentaire est un ouvert. Toute réunion d'une famille finie de fermés est un fermé (y compris l'ensemble vide ∅, qui est — par définition — la réunion de la famille vide). Toute intersection d'une famille (finie ou infinie) de fermés est un fermé (y compris l'espace E tout entier, qui est — par convention dans ce contexte — l'intersection de la famille vide).
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.
IsomorphismeEn mathématiques, un isomorphisme entre deux ensembles structurés est une application bijective qui préserve la structure, et dont la réciproque préserve aussi la structure. Plus généralement, en théorie des catégories, un isomorphisme entre deux objets est un morphisme admettant un « morphisme inverse ». Par exemple, sur l'intervalle des valeurs ... peuvent être remplacées par leur logarithme ..., et les relations d'ordre entre elles seront conservées. On peut à tout moment retrouver les valeurs et en prenant les exponentielles de et .
Catégorie cartésienneUne catégorie cartésienne est, en mathématiques — et plus précisément en théorie des catégories — une catégorie munie d'un objet terminal et du produit binaire. Dans une catégorie cartésienne, la notion de morphisme entre morphismes n'a pas encore de sens. C'est pourquoi l'on définit l'exponentiation, c'est-à-dire l'objet B qui représente l'« ensemble » des morphismes de A dans B. Munie de cette propriété de clôture qu'est l'exponentiation, une catégorie cartésienne devient une catégorie cartésienne fermée.
Expression de forme ferméeEn mathématiques, une expression de forme fermée (également appelée expression fermée, expression de forme close, expression close ou expression explicite) est une expression mathématique pouvant s'obtenir par une combinaison de nombres ou de fonctions et d'opérations de référence. On emploie parfois le terme formule à la place du terme expression : formule de forme fermée, formule explicite, formule de forme close, etc. Le plus souvent, cette terminologie s'emploie pour des solutions d'équations ou de systèmes d'équations.