Loi gamma-normaleEn théorie des probabilités et en statistiques, la loi gamma-normale (ou Gamma- Gaussienne) est une distribution bivariée continue à quatre paramètres. Elle est la prieure conjuguée de la loi normale de moyenne et variance inconnues. Soit une paire de variable aléatoires (X,T). Si la distribution conditionnelle de X sachant T est normale de moyenne et variance et si la distribution marginale de T est une loi gamma alors (X,T) suit une loi gamma-normale, que l'on note La fonction de densité conjointe de (X,T) a la forme Par définition, la distribution marginale de est une loi gamma.
Propagation des incertitudesUne mesure est toujours entachée d'erreur, dont on estime l'intensité par l'intermédiaire de l'incertitude. Lorsqu'une ou plusieurs mesures sont utilisées pour obtenir la valeur d'une ou de plusieurs autres grandeurs (par l'intermédiaire d'une formule explicite ou d'un algorithme), il faut savoir, non seulement calculer la valeur estimée de cette ou ces grandeurs, mais encore déterminer l'incertitude ou les incertitudes induites sur le ou les résultats du calcul.
Loi normale repliéeEn théorie des probabilités et en statistique, la loi normale repliée (ou loi de défaut de forme) est une loi de probabilité continue liée à la loi normale. Considérons une variable aléatoire de loi normale avec moyenne et variance , alors la variable aléatoire est de loi normale repliée. Ainsi on ne comptabilise que la valeur de la variable mais pas son signe. Le terme « repliée » vient du fait que la densité de la loi « à gauche » de x=0 est repliée sur la partie « à droite » de x=0 en prenant la valeur absolue.
Distribution multimodalevignette|Exemple de distribution bimodale de minerais d'or. X : teneur en g/t ; Y : production en tonnes. Le caractère bimodal définit deux groupes de populations statistiques résultant de deux phénomènes différents. En probabilités et statistique, une distribution multimodale est une distribution statistique présentant plusieurs modes. vignette| Histogramme bimodal vignette|Dans ce cas précis, une distribution bimodale un mélange de deux distributions normales avec la même variance mais des moyennes différentes.
Écart typethumb|Exemple de deux échantillons ayant la même moyenne (100) mais des écarts types différents illustrant l'écart type comme mesure de la dispersion autour de la moyenne. La population rouge a un écart type (SD = standard deviation) de 10 et la population bleue a un écart type de 50. En mathématiques, l’écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité.
UncertaintyUncertainty refers to epistemic situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in partially observable or stochastic environments, as well as due to ignorance, indolence, or both. It arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, medicine, psychology, sociology, engineering, metrology, meteorology, ecology and information science.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Test de normalitéEn statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale. Ces tests prennent une place importante en statistiques. En effet, de nombreux tests supposent la normalité des distributions pour être applicables. En toute rigueur, il est indispensable de vérifier la normalité avant d'utiliser les tests.
AvalancheUne avalanche () de neige est d'abord un phénomène physique : une masse de neige qui se détache puis dévale un versant de montagne sous l'effet de la pesanteur, ou, formulé autrement, le mouvement rapide sur une grande pente d'un volume de neige, à la suite d'une rupture d'équilibre dans le manteau neigeux initial. Une avalanche de neige est aussi un aléa avec la possibilité qu'une telle menace (déclenchement, écoulement, impact) se réalise dans un lieu donné à un instant donné.