Analyse constructiveL'analyse constructive est une branche des mathématiques constructives. Elle critique l'analyse mathématique classique et vise à fonder l'analyse sur des principes constructifs. Elle s'inscrit dans le courant de pensée constructiviste ou intuitionniste, dont les principaux membres ont été Kronecker, Brouwer ou Weyl. La critique porte sur la façon dont est utilisée la notion d'existence, de disjonction et sur l'utilisation du raisonnement par l'absurde.
Bletchley Parkthumb|Bletchley Park Mansion. Bletchley Park est un domaine situé dans la ville de Bletchley (faisant partie depuis 1967 de l'agglomération de Milton Keynes), dans le Buckinghamshire, dans le centre de l'Angleterre, et géré par le Bletchley Park Trust, en tant que site historique. Le site abrite actuellement le « National Museum of Computing » (musée national de l'informatique), des bureaux d'entreprises et plusieurs attractions.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Constructive set theoryAxiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.
Fonction linéaire (analyse)Dans les mathématiques élémentaires, les fonctions linéaires sont parmi les fonctions les plus simples que l'on rencontre. Ce sont des cas particuliers d'applications linéaires. Elles traduisent la proportionnalité. Par exemple, on dira que le prix d'un plein d'essence est fonction linéaire du nombre de litres mis dans le réservoir car : pour zéro litre, on paie zéro euro ; pour un litre, on paie 1,40 euro ; pour 2 litres on paie 2,80 euros ; pour 10 litres on paie 14 euros ; pour 100 litres on paie 140 euros ; et pour N litres, on paie 1,4 × N euros.
ROT13Le ROT13 (rotate by 13 places) est un cas particulier du chiffre de César, un algorithme simpliste de chiffrement de texte. Comme son nom l’indique, il s’agit d’un décalage de de chaque lettre du texte à chiffrer. Son principal aspect pratique est que le codage et le décodage se font exactement de la même manière. Un défaut de ce chiffrement est qu’il s’occupe des lettres, il ne s’occupe pas des symboles et de la ponctuation. C’est pourquoi on doit supprimer toute accentuation du texte à chiffrer (ce défaut est moins gênant pour l'anglais que pour le français ou l'allemand).
Enveloppe convexeL'enveloppe convexe d'un objet ou d'un regroupement d'objets géométriques est l'ensemble convexe le plus petit parmi ceux qui le contiennent. Dans un plan, l'enveloppe convexe peut être comparée à la région limitée par un élastique qui englobe tous les points qu'on relâche jusqu'à ce qu'il se contracte au maximum. L'idée serait la même dans l'espace avec un ballon qui se dégonflerait jusqu'à être en contact avec tous les points qui sont à la surface de l'enveloppe convexe.
Arbre binaireEn informatique, un arbre binaire est une structure de données qui peut se représenter sous la forme d'une hiérarchie dont chaque élément est appelé nœud, le nœud initial étant appelé racine. Dans un arbre binaire, chaque élément possède au plus deux éléments fils au niveau inférieur, habituellement appelés gauche et droit. Du point de vue de ces éléments fils, l'élément dont ils sont issus au niveau supérieur est appelé père. Au niveau le plus élevé, niveau 0, il y a un nœud racine.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.