Beltrami equationIn mathematics, the Beltrami equation, named after Eugenio Beltrami, is the partial differential equation for w a complex distribution of the complex variable z in some open set U, with derivatives that are locally L2, and where μ is a given complex function in L∞(U) of norm less than 1, called the Beltrami coefficient, and where and are Wirtinger derivatives. Classically this differential equation was used by Gauss to prove the existence locally of isothermal coordinates on a surface with analytic Riemannian metric.
Espace réflexifEn analyse fonctionnelle, un espace vectoriel normé est dit réflexif si l'injection naturelle dans son bidual topologique est surjective. Les espaces réflexifs possèdent d'intéressantes propriétés géométriques. Soit un espace vectoriel normé, sur ou . On note son dual topologique, c'est-à-dire l'espace (de Banach) des formes linéaires continues de dans le corps de base. On peut alors former le bidual topologique , qui est le dual topologique de . Il existe une application linéaire continue naturelle définie par pour tout dans et dans .
Local diffeomorphismIn mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below. Let and be differentiable manifolds. A function is a local diffeomorphism, if for each point there exists an open set containing such that is open in and is a diffeomorphism.
Fibré normalEn géométrie différentielle, le fibré normal d’une sous-variété différentielle est un fibré vectoriel orthogonal au fibré tangent de la sous-variété dans celui de la variété ambiante. La définition s’étend au cas d’une immersion d’une variété différentielle dans une autre. Elle s’étend aussi plus généralement en topologie différentielle comme un fibré supplémentaire au fibré tangent de la sous-variété.
Filling area conjectureIn differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points. Every smooth surface M or curve in Euclidean space is a metric space, in which the (intrinsic) distance dM(x,y) between two points x, y of M is defined as the infimum of the lengths of the curves that go from x to y along M.
Application harmoniqueEn géométrie différentielle, une application régulière définie d'une variété riemannienne dans une autre est dite harmonique lorsqu'elle est solution d'une certaine équation aux dérivées partielles généralisant l'équation de Laplace. L'équation des applications harmoniques est en général introduite pour résoudre un problème variationnel ; il s'agit de l'équation d'Euler-Lagrange associée à la recherche des points critiques de l'énergie de Dirichlet des applications entre les deux variétés.
Équation d'Euler-LagrangeL’équation d'Euler-Lagrange (en anglais, Euler–Lagrange equation ou ELE) est un résultat mathématique qui joue un rôle fondamental dans le calcul des variations. On retrouve cette équation dans de nombreux problèmes réels de minimisation de longueur d'arc, tels que le problème brachistochrone ou bien encore les problèmes géodésiques. Elle est nommée d'après Leonhard Euler et Joseph-Louis Lagrange. E désignera un espace vectoriel normé, [t , t] un intervalle réel, et l'espace affine des fonctions x : [t , t] → E de classe C telles que , où x , x sont deux vecteurs fixés de E.
Groupe métaplectiqueEn mathématiques, le groupe métaplectique Mp2n est un revêtement à deux feuillets du groupe symplectique Sp2n. Il peut être défini sur les nombres réels ou sur les nombres nombres p-adiques. De manière plus générale, on peut considérer la construction sur un corps local ou un corps fini arbitraire, voire sur l'Anneau des adèles. Le groupe métaplectique possède une représentation linéaire de dimension infinie particulièrement importante, la représentation de Weil.
Theorema egregiumEn mathématiques, et plus précisément en géométrie, le theorema egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il énonce que celle-ci peut être entièrement déterminée à partir de la métrique locale de la surface, c'est-à-dire qu'elle ne dépend pas de la manière dont la surface peut être plongée dans l'espace tridimensionnel. Considérons une surface de l'espace euclidien R.
Cinquième problème de HilbertLe cinquième problème de Hilbert fait partie de la liste des vingt-trois problèmes posés par David Hilbert en 1900, et concerne la caractérisation des groupes de Lie. Il s'agissait (dans un langage moderne et en interprétant la question, puisqu'à l'époque la notion précise de variété différentielle n'existait pas) de démontrer que dans la définition d'un groupe de Lie, la condition de différentiabilité est redondante.