Affine Lie algebraIn mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras.
Hodge structureIn mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures have been generalized for all complex varieties (even if they are singular and non-complete) in the form of mixed Hodge structures, defined by Pierre Deligne (1970). A variation of Hodge structure is a family of Hodge structures parameterized by a manifold, first studied by Phillip Griffiths (1968).
Sous-groupe de FittingSoit G un groupe, au sens mathématique. Le sous-groupe de Fitting de G est un certain sous-groupe caractéristique de G qui intervient de façon importante dans la partie de la théorie des groupes finis appelée analyse locale. Le théorème de Fitting, énoncé et démontré par Hans Fitting en 1938, peut s'énoncer comme suit : Si H1, ...., Hn sont des sous-groupes normaux nilpotents de G, de classes de nilpotence respectives c1, ...., cn, alors le sous-groupe de G engendré par H1, ...
Théorèmes de PicardEn analyse complexe, les théorèmes de Picard, du mathématicien Émile Picard, sont au nombre de deux : Le petit théorème de Picard dit qu'une fonction entière non constante prend tout nombre complexe comme valeur, sauf peut-être un certain nombre complexe. Le grand théorème de Picard dit qu'une fonction holomorphe ayant une singularité essentielle prend, sur tout voisinage de cette singularité, tout nombre complexe une infinité de fois comme valeur, sauf peut-être un certain nombre complexe.
Conjectures de WeilEn mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies.
Somme connexeEn mathématiques, et plus précisément en topologie, la somme connexe est une opération qui s'effectue sur des variétés connexes de même dimension. La somme connexe de deux variétés connexes de même dimension n est obtenue en retirant à chacune un petit voisinage d'un point formé d'une boule ouverte, et en recollant les deux variétés ainsi obtenues (techniquement : en prenant l'espace quotient de leur union disjointe) le long des deux sphères Sn–1 apparues.
List of topologiesThe following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property. Discrete topology − All subsets are open. Indiscrete topology, chaotic topology, or Trivial topology − Only the empty set and its complement are open.
Identity componentIn mathematics, specifically group theory, the identity component of a group G refers to several closely related notions of the largest connected subgroup of G containing the identity element. In point set topology, the identity component of a topological group G is the connected component G0 of G that contains the identity element of the group. The identity path component of a topological group G is the path component of G that contains the identity element of the group.
Witt algebraIn mathematics, the complex Witt algebra, named after Ernst Witt, is the Lie algebra of meromorphic vector fields defined on the Riemann sphere that are holomorphic except at two fixed points. It is also the complexification of the Lie algebra of polynomial vector fields on a circle, and the Lie algebra of derivations of the ring C[z,z−1]. There are some related Lie algebras defined over finite fields, that are also called Witt algebras. The complex Witt algebra was first defined by Élie Cartan (1909), and its analogues over finite fields were studied by Witt in the 1930s.
Groupe de HeisenbergEn mathématiques, le groupe de Heisenberg d'un anneau unifère A (non nécessairement commutatif) est le groupe multiplicatif des matrices triangulaires supérieures de taille 3 à coefficients dans A et dont les éléments diagonaux sont égaux au neutre multiplicatif de l'anneau : Originellement, l'anneau A choisi par Werner Heisenberg était le corps R des réels. Le « groupe de Heisenberg continu », , lui a permis d'expliquer, en mécanique quantique, l'équivalence entre la représentation de Heisenberg et celle de Schrödinger.