Béton de cimentthumb|upright=1.0|Un mètre cube de béton (représentant la production mondiale annuelle de béton par habitant). Le béton de ciment, couramment appelé béton, est un mélange de ciment, de granulats, d'eau et d'adjuvants. Histoire du béton de ciment Ciment Le ciment se compose essentiellement de chaux, de silice, d'alumine et d'oxyde de fer combinés au silicate et aluminate de calcium. Les différents ciments résultent du mélange de clinker, de calcaire, de laitier et de cendres volantes (qui sont des composés à effet pouzzolanique, mais non considérés comme des pouzzolanes).
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Bétonthumb|Aspect hétérogène de la surface d'un béton de ciment, appelé communément béton, et constitué de ciment, d'eau et de granulats fins (sable) et grossiers (graviers). Le béton est un assemblage de matériaux de nature généralement minérale. Il met en présence des matières inertes, appelées granulats ou agrégats (graviers, gravillons, sables), et un liant (ciment, bitume, argile), c'est-à-dire une matière susceptible d'en agglomérer d'autres ainsi que des adjuvants qui modifient les propriétés physiques et chimiques du mélange.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Dérivation numériqueEn analyse numérique, les algorithmes de dérivation numérique évaluent la dérivée d'une fonction mathématique ou d'un sous-programme de fonction en utilisant les valeurs de la fonction et peut-être d'autres propriétés connues sur la fonction. droite|255x255px La méthode la plus simple consiste à utiliser des approximations de différences finies. Une simple estimation à deux points consiste à calculer la pente d'une droite sécante proche passant par les points et .
Béton armévignette|Armatures métalliques de renforcement du béton. vignette|« Cancer du béton » : lorsque le front de carbonatation atteint l'armature métallique, celle-ci est atteinte de rouille qui fait augmenter le volume de l'acier, conduisant à l'éclatement du béton d'enrobage, ce qui provoque des délaminations, ou comme ici des épaufrures qui mettent à nu les armatures oxydées. Le béton armé est un matériau composite constitué de béton et de barres d'acier alliant les propriétés mécaniques complémentaires de ces matériaux (bonne résistance à la compression du béton et bonne résistance à la traction de l'acier).
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.