Catégorie monoïdaleEn mathématiques, une catégorie monoïdale est une catégorie munie d'un bifoncteur qui généralise la notion de produit tensoriel de deux structures algébriques. Intuitivement, il s'agit de l'analogue, au niveau des catégories, de la notion de monoïde, c'est-à-dire que le bifoncteur joue le rôle d'une sorte de multiplication pour les objets de la catégorie. Une catégorie monoïdale est une catégorie munie : D'un bifoncteur appelé produit tensoriel. D'un objet I appartenant à appelé « objet unité ».
Fibration de HopfEn géométrie la fibration de Hopf donne une partition de la sphère à 3-dimensions S3 par des grands cercles. Plus précisément, elle définit une structure fibrée sur S3. L'espace de base est la sphère à 2-dimensions S2, la fibre modèle est un cercle S1. Ceci signifie notamment qu'il existe une application p de projection de S3 sur S2, telle que les images réciproques de chaque point de S2 soient des cercles. Cette structure a été découverte par Heinz Hopf en 1931.
Algèbre associativevignette|Relations entre certaines structures algébriques. En mathématiques, une algèbre associative (sur un anneau commutatif A) est une des structures algébriques utilisées en algèbre générale. C'est un anneau (ou simplement un pseudo-anneau) B muni d'une structure supplémentaire de module sur A et tel que la loi de multiplication de l'anneau B soit A-bilinéaire. C'est donc un cas particulier d'algèbre sur un anneau. Soit A un anneau commutatif. On dit que (B , + , . , × ) est une A-algèbre associative lorsque : (B , + , .
Algèbre de HopfEn mathématiques, une algèbre de Hopf, du nom du mathématicien Heinz Hopf, est une bialgèbre qui possède en plus une opération (l'antipode) qui généralise la notion de passage à l'inverse dans un groupe. Ces algèbres ont été introduites à l'origine pour étudier la cohomologie des groupes de Lie. Les algèbres de Hopf interviennent également en topologie algébrique, en théorie des groupes et dans bien d'autres domaines. Enfin, ce qu'on appelle les groupes quantiques sont souvent des algèbres de Hopf « déformées » et qui ne sont en général ni commutatives, ni cocommutatives.
Extension de GaloisEn mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension normale séparable. L'ensemble des automorphismes de l'extension possède une structure de groupe appelée groupe de Galois. Cette structure de groupe caractérise l'extension, ainsi que ses sous-corps. Les extensions de Galois sont des structures largement utilisées pour la démonstration de théorèmes en théorie algébrique des nombres, comme le dernier théorème de Fermat, ou en théorie de Galois pure, comme le théorème d'Abel-Ruffini.
Ensemble simplicialEn mathématiques, un ensemble simplicial X est un objet de nature combinatoire intervenant en topologie. Il est la donnée : d'une famille (X) d'ensembles, indexée par les entiers naturels, les éléments de X étant pensés comme des simplexes de dimension n et pour toute application croissanted'une application le tout tel que Autrement dit : X est un foncteur contravariant, de la catégorie simpliciale Δ dans la catégorie Set des ensembles, ou encore un foncteur covariant de la catégorie opposée Δ dans Set.
FibrationEn théorie de l'homotopie, une fibration est une application continue entre espaces topologiques satisfaisant une propriété de relèvement des homotopies, qui est satisfaite en général par les projections fibrées. Les fibrations de Serre relèvent les homotopies depuis les CW-complexes tandis que les fibrations de Hurewicz relèvent les homotopies depuis n'importe quel espace topologique.
Closed monoidal categoryIn mathematics, especially in , a closed monoidal category (or a monoidal closed category) is a that is both a and a in such a way that the structures are compatible. A classic example is the , Set, where the monoidal product of sets and is the usual cartesian product , and the internal Hom is the set of functions from to . A non- example is the , K-Vect, over a field . Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another.
Spectre (topologie)En topologie algébrique, une branche des mathématiques, un spectre est un objet représentant une théorie cohomologique généralisée (qui découle du ). Cela signifie que, étant donné une théorie de cohomologie,il existe des espaces tels que l'évaluation de la théorie cohomologique en degré sur un espace équivaut à calculer les classes d'homotopie des morphismes à l'espace , soit encore.Remarquons qu'il existe plusieurs catégories de spectres différentes conduisant à de nombreuses difficultés techniques, mais ils déterminent tous la même , connue sous le nom de catégorie d'homotopie stable.
Algèbre tensorielleEn mathématiques, une algèbre tensorielle est une algèbre sur un corps dont les éléments (appelés tenseurs) sont représentés par des combinaisons linéaires de « mots » formés avec des vecteurs d'un espace vectoriel donné. Les seules relations de dépendance linéaire entre ces mots sont induites par les combinaisons linéaires entre les vecteurs. Si l'espace vectoriel sous-jacent est muni d'une base, son algèbre tensorielle s'identifie avec l'algèbre associative unitaire libre engendrée par cette base.