4-polytopeEn géométrie, un 4-polytope (fréquemment appelé également un polychore) est un polytope de l'espace à quatre dimensions. C'est une figure connexe, composée d'un nombre fini de polytopes de dimension inférieure : des sommets, des arêtes, des faces (qui sont des polygones), et des cellules (qui sont des polyèdres), chaque face appartenant à exactement deux cellules. Le 4-polytope le plus connu est le tesseract (ou hypercube), analogue en 4D du cube. La définition des 4-polytopes varie beaucoup selon les auteurs.
Réseau réciproqueEn cristallographie, le réseau réciproque d'un réseau de Bravais est l'ensemble des vecteurs tels que : pour tous les vecteurs position du réseau de Bravais. Ce réseau réciproque est lui-même un réseau de Bravais, et son réseau réciproque est le réseau de Bravais de départ. Un cristal peut se décrire comme un réseau aux nœuds duquel se trouvent des motifs : atome, ion, molécule. Si l'on appelle les vecteurs définissant la maille élémentaire, ces vecteurs définissent une base de l'espace.
CristallographieLa cristallographie est la science qui se consacre à l'étude des cristaux à l'échelle atomique. Les propriétés physico-chimiques d'un cristal sont étroitement liées à l'arrangement spatial des atomes dans la matière. L'état cristallin est défini par un caractère périodique et ordonné à l'échelle atomique ou moléculaire. Le cristal est obtenu par translation dans toutes les directions d'une unité de base appelée maille élémentaire.
Code automodifiableUn code automodifiable est, en programmation informatique, un programme qui peut se modifier lui-même, c’est-à-dire appeler des routines, fonctions ou méthodes qui seront créées par le programme lui-même. En dehors de l'idée, qui relève pour le moment de la fiction, d'un robot qui modifierait lui-même sa finalité, l'utilisation la plus courante du code automodifiable est l'optimisation de la vitesse d'exécution d'un programme : par exemple un interpréteur peut analyser le code source qu'il est en train d'exécuter, se rendre compte qu'une fonction est appelée fréquemment, et en réaliser à la volée une version compilée, qui sera exécutée plus rapidement.
Géométrie discrèteLa géométrie discrète est une branche de la géométrie. On parle de géométrie discrète pour la distinguer de la géométrie « continue ». Tout comme cette dernière, elle peut être analytique, les objets sont dans ce cas décrits par des inéquations. Un exemple simple : la géométrie continue en deux dimensions permet de définir des droites, des cercles dans un plan. Ces objets sont des ensembles de points qui sont des couples de nombres réels.
TesseractEn géométrie, le tesseract, aussi appelé 8-cellules ou octachore, est l'analogue du cube (tri-dimensionnel), où le mouvement le long de la quatrième dimension est souvent une représentation pour des transformations liées du cube à travers le temps. Le tesseract est au cube ce que le cube est au carré ; ou, plus formellement, le tesseract peut être décrit comme un 4-polytope régulier convexe dont les frontières sont constituées par huit cellules cubiques.
HiérarchieLe concept de hiérarchie tiré des vocables grec hieros (« sacré ») et archos (« commencement », ou « ce qui est premier ») ou plus certainement arkhê (« pouvoir », ou « commandement ») s'applique à plusieurs domaines, physiques ou moraux. Définition économique : fait qu'un individu A puisse obtenir d'un individu B qu'il serve les intérêts de son supérieur plutôt que ses intérêts propres. Étymologiquement parlant, la notion de hiérarchie est basée sur le caractère plus ou moins sacré attribué à une personne, un concept ou une chose.
Paramètre cristallinLes paramètres cristallins, aussi appelés paramètres de maille, sont des grandeurs utilisées pour décrire la maille d'un cristal. On distingue trois longueurs (a, b, c) et trois angles (α, β, γ) qui déterminent entièrement le parallélépipède qu'est la maille, élémentaire ou multiple. Les paramètres a, b et c sont mesurés en ångströms (Å), en nanomètres (nm), parfois en picomètres, et α, β et γ en degrés (°).
Auto-hébergement (informatique)Le premier compilateur auto-hébergé (si l'on exclut les assembleurs) a été écrit pour le Lisp par Hart et Levin au Massachusetts Institute of Technology (MIT) en 1962. Puisque les interpréteurs Lisp, mais non les compilateurs, existaient auparavant, ils utilisaient une méthode originale pour compiler leur compilateur. Le compilateur, comme tout programme Lisp, pouvait être exécuté dans un interpréteur. Donc, il pouvait simplement exécuter le compilateur dans l'interpréteur lui donnant ensuite, son propre code source à compiler.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.