Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.
User interface designUser interface (UI) design or user interface engineering is the design of user interfaces for machines and software, such as computers, home appliances, mobile devices, and other electronic devices, with the focus on maximizing usability and the user experience. In computer or software design, user interface (UI) design primarily focuses on information architecture. It is the process of building interfaces that clearly communicates to the user what's important. UI design refers to graphical user interfaces and other forms of interface design.
Interface utilisateur tangiblevignette|Reactable, un exemple d'interface utilisateur tangible Une interface utilisateur tangible est une interface utilisateur sur laquelle l'utilisateur interagit avec l'information numérique par le moyen de l'environnement physique. L'objectif de développement des interfaces utilisateur tangibles est d'encourager la collaboration, l'éducation et le design (conception) en donnant à l'information digitale une forme physique, profitant ainsi des capacités humaines de saisir et de manipuler des objets physiques et des matériaux.
Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Interface graphiquethumb|Quelques widgets typiques. En informatique, une interface graphique (en anglais GUI pour graphical user interface) ou un environnement graphique est un dispositif de dialogue homme-machine, dans lequel les objets à manipuler sont dessinés sous forme de pictogrammes à l'écran, de sorte que l'usager peut les utiliser en imitant la manipulation physique de ces objets avec un dispositif de pointage, le plus souvent une souris. Ce type d'interface a été créé en 1973 sur le Xerox Alto par les ingénieurs du Xerox PARC pour remplacer les interfaces en ligne de commande.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
Zooming user interfaceIn computing, a zooming user interface or zoomable user interface (ZUI, pronounced zoo-ee) is a graphical environment where users can change the scale of the viewed area in order to see more detail or less, and browse through different documents. A ZUI is a type of graphical user interface (GUI). Information elements appear directly on an infinite virtual desktop (usually created using vector graphics), instead of in windows. Users can pan across the virtual surface in two dimensions and zoom into objects of interest.
Équation linéaireUne équation à coefficients réels ou complexes est dite linéaire quand elle peut être présentée sous la forme ax = b ou, de manière équivalente ax – b = 0, où x est l'inconnue, a et b sont deux nombres donnés. Si a est différent de zéro, la seule solution est le nombre x = b/a. Plus généralement, une équation est dite linéaire lorsqu'elle se présente sous la forme u(x) = b, où u est une application linéaire entre deux espaces vectoriels E et F, b étant un vecteur donné de F. On recherche l'inconnue x dans E.
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.