Indépendance linéaireEn algèbre linéaire, étant donné une famille de vecteurs d'un même espace vectoriel, les vecteurs de la famille sont linéairement indépendants, ou forment une famille libre, si la seule combinaison linéaire de ces vecteurs qui soit égale au vecteur nul est celle dont tous les coefficients sont nuls. Cela revient à dire qu'aucun des vecteurs de la famille n'est combinaison linéaire des autres. Dans le cas où des vecteurs ne sont pas linéairement indépendants, on dit qu'ils sont linéairement dépendants, ou qu'ils forment une famille liée.
Core (microarchitecture)La microarchitecture Core est une microarchitecture x86 d'Intel, qui succède en 2006 aux architectures P6 et NetBurst. Elle fut utilisée par tous les processeurs x86 produits par Intel à l'époque, depuis le processeur pour ordinateur portable jusqu'au processeur Xeon pour serveur, d'abord gravés en puis en . Les processeurs de marque Core 2 utilisent exclusivement l'architecture Core. « Core » est en anglais un nom commun signifiant « noyau » ou « cœur », et désignant en informatique l'ensemble des structures constituant un seul microprocesseur : unités de décodages, de prédiction, d'exécution, cache L1, etc.
Microprocesseur multi-cœurvignette|Un processeur quad-core AMD Opteron. vignette|L’Intel Core 2 Duo E6300 est un processeur double cœur. Un microprocesseur multi-cœur (multi-core en anglais) est un microprocesseur possédant plusieurs cœurs physiques fonctionnant simultanément. Il se distingue d'architectures plus anciennes (360/91) où un processeur unique commandait plusieurs circuits de calcul simultanés. Un cœur (en anglais, core) est un ensemble de circuits capables d’exécuter des programmes de façon autonome.
Combinaison linéaireEn mathématiques, une combinaison linéaire est une expression construite à partir d'un ensemble de termes en multipliant chaque terme par une constante et en ajoutant le résultat. Par exemple, une combinaison linéaire de x et y serait une expression de la forme ax + by, où a et b sont des constantes. Le concept de combinaison linéaire est central en algèbre linéaire et dans des domaines connexes des mathématiques. La majeure partie de cet article traite des combinaisons linéaires dans le contexte d'espace vectoriel sur un corps commutatif, et indique quelques généralisations à la fin de l'article.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.
SiliciumLe silicium est l'élément chimique de numéro atomique 14, de symbole Si. Ce métalloïde tétravalent appartient au groupe 14 du tableau périodique. C'est l'élément le plus abondant dans la croûte terrestre après l'oxygène, soit 25,7 % de sa masse, mais il n'est comparativement présent qu'en relativement faible quantité dans la matière constituant le vivant.
Équation linéaireUne équation à coefficients réels ou complexes est dite linéaire quand elle peut être présentée sous la forme ax = b ou, de manière équivalente ax – b = 0, où x est l'inconnue, a et b sont deux nombres donnés. Si a est différent de zéro, la seule solution est le nombre x = b/a. Plus généralement, une équation est dite linéaire lorsqu'elle se présente sous la forme u(x) = b, où u est une application linéaire entre deux espaces vectoriels E et F, b étant un vecteur donné de F. On recherche l'inconnue x dans E.
Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Énergie de liaisonL'énergie de liaison d'un système de corps en interaction (atomes ou particules) est l'énergie nécessaire pour le dissocier. En chimie et en physique atomique l'énergie de liaison, dite aussi chaleur d'atomisation ou enthalpie de liaison, a pour origine l'interaction électromagnétique. En physique nucléaire l'énergie de liaison a pour origine l'interaction forte (notamment, entre quarks) et à un moindre degré l'interaction faible (pour les nucléides radioactifs β). Énergie de liaison (chimie) Énergie de dis
Liaison nucléaireLa liaison nucléaire est le phénomène qui assure la cohésion d'un noyau atomique. Le noyau atomique est composé de protons de charge électrique positive, et de neutrons de charge électrique nulle. La répulsion coulombienne tend à séparer les protons. C'est la force nucléaire qui permet d'assurer la stabilité du noyau. L'énergie de liaison E d'un noyau atomique est l'énergie qu'il faut fournir au noyau pour le dissocier en ses nucléons, qui s'attirent du fait de la force nucléaire, force qui correspond à l’interaction forte résiduelle.