Méthodes de quadrature de GaussDans le domaine mathématique de l'analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d'une intégrale. En général, on remplace le calcul de l'intégrale par une somme pondérée prise en un certain nombre de points du domaine d'intégration (voir calcul numérique d'une intégrale pour plus d'informations). La méthode de quadrature de Gauss, du nom de Carl Friedrich Gauss, est une méthode de quadrature exacte pour un polynôme de degré 2n – 1 avec n points pris sur le domaine d'intégration.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Method of moments (electromagnetics)The method of moments (MoM), also known as the moment method and method of weighted residuals, is a numerical method in computational electromagnetics. It is used in computer programs that simulate the interaction of electromagnetic fields such as radio waves with matter, for example antenna simulation programs like NEC that calculate the radiation pattern of an antenna. Generally being a frequency-domain method, it involves the projection of an integral equation into a system of linear equations by the application of appropriate boundary conditions.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Système de calcul formelUn système de calcul formel (computer algebra system ou CAS en anglais) est un logiciel qui facilite le calcul symbolique. La partie principale de ce système est la manipulation des expressions mathématiques sous leur forme symbolique. Les expressions peuvent être : des polynômes avec de multiples variables ; des fonctions (fonctions trigonométriques, exponentielle, etc.) ; des fonctions spéciales (gamma, zêta, erf, Bessel, etc.
Calcul formelLe calcul formel, ou parfois calcul symbolique, est le domaine des mathématiques et de l’informatique qui s’intéresse aux algorithmes opérant sur des objets de nature mathématique par le biais de représentations finies et exactes. Ainsi, un nombre entier est représenté de manière finie et exacte par la suite des chiffres de son écriture en base 2. Étant donné les représentations de deux nombres entiers, le calcul formel se pose par exemple la question de calculer celle de leur produit.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Intégrale de DirichletL'intégrale de Dirichlet est l'intégrale de la fonction sinus cardinal sur la demi-droite des réels positifs Il s'agit d'une intégrale impropre semi-convergente, c'est-à-dire qu'elle n'est pas absolument convergente () mais existe et est finie. On considère la fonctionEn 0, sa limite à droite vaut 1, donc f est prolongeable en une application continue sur [0, +∞[, si bien qu'elle est intégrable sur [0, a] pour tout a > 0.Mais elle n'est pas intégrable en +∞, c'est-à-dire que.
Intégrale multiplevignette|Fig. 2. Intégrale double comme volume du solide situé entre un domaine du plan xy et la surface image de ce domaine par une fonction. En analyse mathématique, l'intégrale multiple est une forme d'intégrale qui s'applique aux fonctions de plusieurs variables réelles. Les deux principaux outils de calcul sont le changement de variables et le théorème de Fubini. Ce dernier permet de ramener de proche en proche un calcul d'intégrale multiple à des calculs d'intégrales simples, et d'interpréter le « volume » d'un domaine « simple » de dimension n (ou son hypervolume si n > 3) comme l'intégrale d'une fonction de n – 1 variables (Fig.
EvaluationIn common usage, evaluation is a systematic determination and assessment of a subject's merit, worth and significance, using criteria governed by a set of standards. It can assist an organization, program, design, project or any other intervention or initiative to assess any aim, realisable concept/proposal, or any alternative, to help in decision-making; or to ascertain the degree of achievement or value in regard to the aim and objectives and results of any such action that has been completed.