Intégrale de Stieltjesvignette|droite|Thomas Stieltjes (1856-1894). L'intégrale de Stieltjes constitue une généralisation de l'intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f et g définies sur un intervalle fermé [a, b], ainsi qu'une subdivision a = x < x < x < ... < x = b de cet intervalle. Si la somme de Riemann avec ξi ∈ [x, x], tend vers une limite S lorsque le pas max(x – x) tend vers 0, alors S est appelée l'intégrale de Stieltjes (ou parfois l'intégrale de Riemann-Stieltjes) de la fonction f par rapport à g.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Cavalieri's quadrature formulaIn calculus, Cavalieri's quadrature formula, named for 17th-century Italian mathematician Bonaventura Cavalieri, is the integral and generalizations thereof. This is the definite integral form; the indefinite integral form is: There are additional forms, listed below. Together with the linearity of the integral, this formula allows one to compute the integrals of all polynomials. The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = xn.
Espace-temps (structure algébrique)En physique mathématique, lespace-temps peut-être modélisé par une structure d'algèbre géométrique satisfaisant la géométrie décrite par la relativité restreinte. On parle alors dalgèbre d'espace-temps ou algèbre spatio-temporelle (Space-time algebra en anglais). L'espace-temps contient alors des vecteurs, bivecteurs et autres multivecteurs qui peuvent être combinés les uns aux autres ainsi que transformés selon les transformations de Lorentz ou autres transformations possibles dans une algèbre géométrique (notamment les réflexions).
Théorème d'AmpèreEn magnétostatique, le théorème d'Ampère permet de déterminer la valeur du champ magnétique grâce à la donnée des courants électriques. Ce théorème est une forme intégrale de l'équation de Maxwell-Ampère. Il a été découvert par André-Marie Ampère, et constitue l'équivalent magnétostatique du théorème de Gauss. Pour être appliqué analytiquement de manière simple, le théorème d'Ampère nécessite que le problème envisagé soit de symétrie élevée.
Méthode de Ruffini-HornerEn mathématiques et algorithmique, la méthode de Ruffini-Horner, connue aussi sous les noms de méthode de Horner, algorithme de Ruffini-Horner ou règle de Ruffini, se décline sur plusieurs niveaux. Elle permet de calculer la valeur d'un polynôme en x. Elle présente un algorithme simple effectuant la division euclidienne d'un polynôme par X − x. Mais elle offre aussi une méthode de changement de variable X = x + Y dans un polynôme. C'est sous cette forme qu'elle est utilisée pour déterminer une valeur approchée d'une racine d'un polynôme.
Singular integral operators of convolution typeIn mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space.
Formule intégrale de Cauchyvignette|Illustration de la formule intégrale de Cauchy en analyse complexe La formule intégrale de Cauchy, due au mathématicien Augustin Louis Cauchy, est un point essentiel de l'analyse complexe. Elle exprime le fait que la valeur en un point d'une fonction holomorphe est complètement déterminée par les valeurs qu'elle prend sur un chemin fermé contenant (c'est-à-dire entourant) ce point. Elle peut aussi être utilisée pour exprimer sous forme d'intégrales toutes les dérivées d'une fonction holomorphe.
Courbe hyperelliptiquedroite|vignette|Une courbe hyperelliptique, d'équation En géométrie algébrique, une courbe hyperelliptique est un cas particulier de courbe algébrique de genre g > 1 donnée par une équation de la forme : où f(x) est un polynôme de degré n = 2g + 1 > 4 ou avec n = 2g + 2 > 4 racines distinctes et h(x) est un polynôme de degré strictement inférieur à g + 2 (si la caractéristique du corps commutatif n'est pas 2, on peut prendre h(x) = 0).
Spherical wave transformationSpherical wave transformations leave the form of spherical waves as well as the laws of optics and electrodynamics invariant in all inertial frames. They were defined between 1908 and 1909 by Harry Bateman and Ebenezer Cunningham, with Bateman giving the transformation its name. They correspond to the conformal group of "transformations by reciprocal radii" in relation to the framework of Lie sphere geometry, which were already known in the 19th century.