Bruit additif blanc gaussienLe bruit additif blanc gaussien est un modèle élémentaire de bruit utilisé en théorie de l'information pour imiter de nombreux processus aléatoires qui se produisent dans la nature. Les adjectifs indiquent qu'il est : additif il s'ajoute au bruit intrinsèque du système d'information ; blanc sa puissance est uniforme sur toute la largeur de bande de fréquences du système, par opposition avec un bruit coloré qui privilégie une bande de fréquences par analogie avec une lumière colorée dans le spectre visible ; gaussien il a une distribution normale dans le domaine temporel avec une moyenne nulle (voir bruit gaussien).
Bruit gaussienEn traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Noise (signal processing)In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion. Sometimes the word is also used to mean signals that are random (unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filters.
Bruit de mesureEn métrologie, le bruit de mesure est l'ensemble des signaux parasites qui se superposent au signal que l'on cherche à obtenir au moyen d'une mesure d'un phénomène physique. Ces signaux sont une gêne pour la compréhension de l'information que le signal transporte. La métrologie vise donc notamment à connaître leurs origines et à les caractériser, afin de les éliminer et d'obtenir le signal d'origine aussi distinctement que possible. La source du bruit d'origine externe est externe au système physique générant le signal utile et agit par influence sur celui-ci.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Détection de contoursEn et en vision par ordinateur, on appelle détection de contours les procédés permettant de repérer les points d'une qui correspondent à un changement brutal de l'intensité lumineuse. Ces changements de propriétés de l' indiquent en général des éléments importants de structure dans l'objet représenté. Ces éléments incluent des discontinuités dans la profondeur, dans l'orientation d'une surface, dans les propriétés d'un matériau et dans l'éclairage d'une scène.
Bruit blancthumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither.
Scale-invariant feature transform[[Fichier:Matching of two images using the SIFT method.jpg|thumb|right|alt=Exemple de mise en correspondance de deux images par la méthode SIFT : des lignes vertes relient entre eux les descripteurs communs à un tableau et une photo de ce même tableau, de moindre qualité, ayant subi des transformations. |Exemple de résultat de la comparaison de deux images par la méthode SIFT (Fantasia ou Jeu de la poudre, devant la porte d’entrée de la ville de Méquinez, par Eugène Delacroix, 1832).
Mesure stéréoscopiqueLa stéréovision ou mesure stéréoscopique est une méthode de mesure qui consiste à se servir de la prise d'images (photographiques ou numériques) prises de différents points de vue, pour déterminer les dimensions, les formes ou les positions d'objets. Pour cela on utilise : soit des appareils photographiques étalonnés utilisant des films argentiques plans et stables dimensionnellement ou des détecteurs C.C.D à haute résolution pour des mesures statiques ; soit des caméras (film ou CCD) si des mesures dynamiques sont nécessaires (vidéogrammétrie).