Exchangeable random variablesIn statistics, an exchangeable sequence of random variables (also sometimes interchangeable) is a sequence X1, X2, X3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. Thus, for example the sequences both have the same joint probability distribution. It is closely related to the use of independent and identically distributed random variables in statistical models.
Anneau noethérienEn mathématique, un anneau noethérien est un cas particulier d'anneau, c'est-à-dire d'un ensemble muni d'une addition et d'une multiplication compatible avec l'addition, au sens de la distributivité. De nombreuses questions mathématiques s'expriment dans un contexte d'anneau, les endomorphismes d'un espace vectoriel ou d'un module sur un anneau, les entiers algébriques de la théorie algébrique des nombres, ou encore les surfaces de la géométrie algébrique.
Groupe ordonnéUn groupe ordonné est un groupe muni d'une relation d'ordre respectée par les translations. Soit (G,.) un groupe (la loi du groupe étant notée multiplicativement) et ≤ une relation d'ordre sur G. On dit que celle-ci est compatible avec la loi du groupe lorsque pour tous éléments x, y et z du groupe, la relation x ≤ y entraîne les deux relations zx ≤ zy et xz ≤ yz. Un groupe ordonné est un ensemble muni simultanément d'une loi de groupe et d'une relation d'ordre compatible.
Module libreEn algèbre, un module libre est un module M qui possède une base B, c'est-à-dire un sous-ensemble de M tel que tout élément de M s'écrive de façon unique comme combinaison linéaire (finie) d'éléments de B. Une base de M est une partie B de M qui est à la fois : génératrice pour M, c'est-à-dire que tout élément de M est combinaison linéaire d'éléments de B ; libre, c'est-à-dire que pour toutes familles finies (ei)1≤i≤n d'éléments de B deux à deux distincts et (ai)1≤i≤n d'éléments de l'anneau sous-jacent telles que a1e1 + .
Produit tensoriel de deux modulesLe produit tensoriel de deux modules est une construction en théorie des modules qui, à deux modules sur un même anneau commutatif unifère A, assigne un module. Le produit tensoriel est très important dans les domaines de l'analyse fonctionnelle, de la topologie algébrique et de la géométrie algébrique. Le produit tensoriel permet en outre de ramener l'étude d'applications bilinéaires ou multilinéaires à des applications linéaires.
IdéalEn mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau qui est, de plus, stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Variables indépendantes et identiquement distribuéesvignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
Bornological spaceIn mathematics, particularly in functional analysis, a bornological space is a type of space which, in some sense, possesses the minimum amount of structure needed to address questions of boundedness of sets and linear maps, in the same way that a topological space possesses the minimum amount of structure needed to address questions of continuity. Bornological spaces are distinguished by the property that a linear map from a bornological space into any locally convex spaces is continuous if and only if it is a bounded linear operator.