Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Discriminant d'un corps de nombresdroite|vignette|upright=1.6|Un domaine fondamental de l'anneau des entiers du corps K obtenu à partir de en adjoignant une racine de . Ce domaine fondamental se trouve à l'intérieur de . Le discriminant de K est 49 = 7. En conséquence, le volume du domaine fondamental est 7 et K n'est ramifié qu'en 7. En mathématiques, le discriminant d'un corps de nombres est un invariant numérique qui, moralement, mesure la taille de l'anneau des entiers de ce corps de nombres.
Anneau euclidienvignette|Statue d'Euclide à Oxford. En mathématiques et plus précisément en algèbre, dans le cadre de la théorie des anneaux, un anneau euclidien est un type particulier d'anneau commutatif intègre (voir aussi l'article anneau euclidien non commutatif). Un anneau est dit euclidien s'il est possible d'y définir une division euclidienne. Un anneau euclidien est toujours principal. Cette propriété est riche de conséquences : tout anneau principal vérifie l'identité de Bézout, le lemme d'Euclide, il est factoriel et satisfait les conditions du théorème fondamental de l'arithmétique.
Crible algébriqueEn théorie des nombres, l'algorithme du crible du corps de nombres généralisé (GNFS) obtient la décomposition d'un entier en produit de facteurs premiers. C'est à l'heure actuelle (2018) l'algorithme le plus efficace connu pour obtenir cette décomposition, lorsque le nombre considéré est assez grand, c'est-à-dire au-delà d'environ 10100, et ne possède pas de structure remarquable. Cette efficacité est due pour partie à l'utilisation d'une méthode de crible et pour partie à l'utilisation d'algorithmes efficaces pour certaines opérations (comme la manipulation de matrices creuses).
Espace euclidienEn mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
Corps totalement réelEn mathématiques et en théorie des nombres, un corps de nombres K est dit totalement réel si pour chaque plongement de K dans l'ensemble des nombres complexes, l' se trouve dans l'ensemble des nombres réels. De manière équivalente, K est engendré sur Q par une racine d'un polynôme à coefficients entiers dont toutes les racines sont réelles, ou bien encore le produit tensoriel K⊗R est un produit d'exemplaires de R. La notion de signature d'un corps de nombres permet de mesurer plus précisément à quel point un corps est loin d'être totalement réel.
DiscriminantEn mathématiques, le discriminant noté , ou le réalisant noté , est une notion algébrique. Il est utilisé pour résoudre des équations du second degré. Il se généralise pour des polynômes de degré > 0 quelconque et dont les coefficients sont choisis dans des ensembles munis d'une addition et d'une multiplication. Le discriminant apporte dans ce cadre une information sur l'existence ou l'absence de racine multiple. Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.