Category of metric spacesIn , Met is a that has metric spaces as its and metric maps (continuous functions between metric spaces that do not increase any pairwise distance) as its morphisms. This is a category because the composition of two metric maps is again a metric map. It was first considered by . The monomorphisms in Met are the injective metric maps. The epimorphisms are the metric maps for which the domain of the map has a dense in the range. The isomorphisms are the isometries, i.e. metric maps which are injective, surjective, and distance-preserving.
Elementary amenable groupIn mathematics, a group is called elementary amenable if it can be built up from finite groups and abelian groups by a sequence of simple operations that result in amenable groups when applied to amenable groups. Since finite groups and abelian groups are amenable, every elementary amenable group is amenable - however, the converse is not true.
Famille (mathématiques)En mathématiques, la notion de famille est une généralisation de celle de suite, suite finie ou suite indexée par tous les entiers naturels. Ainsi on pourra parler, en algèbre linéaire, de la famille de vecteurs qui est une famille finie, ou de la famille dénombrable (un)n ∈ N. Une famille est toujours indexée, même si elle l'est parfois implicitement, par exemple dans les locutions « famille libre » ou « famille génératrice ». Une famille (x) d'éléments x d'un ensemble E, indexée par un ensemble I, lindex, est une application définie sur I à valeurs dans E.
Axiom of countabilityIn mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist.
Théorie descriptive des ensemblesLa théorie descriptive des ensembles est une branche des mathématiques s'intéressant aux ensembles « définissables ». Son principal but est de classifier ces ensembles par complexité. Elle a de nombreux liens avec la théorie des ensembles et a des applications dans de nombreux domaines. Historiquement, les premières questions de la théorie descriptive des ensembles sont apparues à la suite de la découverte d'une erreur par Mikhaïl Souslin en dans une démonstration de Lebesgue.
Théorème de BaireLe théorème de Baire, dit aussi lemme de Baire, est un théorème de topologie dû au mathématicien René Baire. On dit qu'un espace topologique est un espace de Baire si toute intersection dénombrable d'ouverts denses est dense. De façon équivalente, un espace topologique est de Baire si toute union dénombrable de fermés d'intérieurs vides est d'intérieur vide, ou encore, si le seul ouvert maigre est le vide. Le lemme (ou théorème) de Baire donne des conditions suffisantes pour que certains espaces soient de Baire.
Processus ergodiqueUn est un processus stochastique pour lequel les statistiques peuvent être approchées par l'étude d'une seule réalisation suffisamment longue. Le théorème ergodique affirme que, sous condition, converge vers une limite pour presque toutes les réalisations , mais ne garantit pas l'égalité des à l'espérance . Un signal peut être: stationnaire mais non ergodique : par exemple le signal constant pour chaque réalisation. ergodique mais non stationnaire : par exemple le signal .
Morphisme platEn géométrie algébrique, un morphisme de schémas peut être vu comme une famille de schémas paramétrée par les points de Y. La notion de platitude de f est une sorte de continuité de cette famille. Un morphisme est dit plat en un point x de X si l'homomorphisme d'anneaux induit par f est plat. On dit que f est un morphisme plat s'il est plat en tout point de X. On dit que f est fidèlement plat s'il est de plus surjectif. Si est un faisceau quasi-cohérent sur X.
Dimension de KrullEn mathématiques, et plus particulièrement en géométrie algébrique, la taille et la complexité d'une variété algébrique (ou d'un schéma) est d'abord mesurée par sa dimension. Elle est fondée sur la topologie de Zariski et coïncide avec l'intuition dans le cas des espaces affines. Espace topologique irréductible Soit un espace topologique. On dit que est irréductible si tout ouvert non vide de est partout dense dans . Cela revient à dire que si et sont deux parties fermées dont la réunion est égale à , alors l'une d'entre elles est égale à .
Thompson groupsIn mathematics, the Thompson groups (also called Thompson's groups, vagabond groups or chameleon groups) are three groups, commonly denoted , that were introduced by Richard Thompson in some unpublished handwritten notes in 1965 as a possible counterexample to the von Neumann conjecture. Of the three, F is the most widely studied, and is sometimes referred to as the Thompson group or Thompson's group. The Thompson groups, and F in particular, have a collection of unusual properties that have made them counterexamples to many general conjectures in group theory.