Méthode de Monte-CarloUne méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Probabilité a prioriDans le théorème de Bayes, la probabilité a priori (ou prior) désigne une probabilité se fondant sur des données ou connaissances antérieures à une observation. Elle s'oppose à la probabilité a posteriori (ou posterior) correspondante qui s'appuie sur les connaissances postérieures à cette observation. Le théorème de Bayes s'énonce de la manière suivante : si . désigne ici la probabilité a priori de , tandis que désigne la probabilité a posteriori, c'est-à-dire la probabilité conditionnelle de sachant .
Réseau de capteurs sans filUn réseau de capteurs sans fil est un réseau ad hoc d'un grand nombre de nœuds, qui sont des micro-capteurs capables de recueillir et de transmettre des données d'une manière autonome. La position de ces nœuds n'est pas obligatoirement prédéterminée. Ils peuvent être aléatoirement répartis dans une zone géographique, intitulée « champ de captage » correspondant au terrain concerné pour le phénomène capté. En plus d'applications civiles, il existe des applications militaires aux réseaux de capteurs (détection d'intrusions, localisation de combattants, véhicules, armes, etc.
Target audienceA target audience is the intended audience or readership of a publication, advertisement, or other message catered specifically to said intended audience. In marketing and advertising, it is a particular group of consumer within the predetermined target market, identified as the targets or recipients for a particular advertisement or message. Businesses that have a wide target market will focus on a specific target audience for certain messages to send, such as The Body Shops Mother's Day advertisements, which were aimed at the children and spouses of women, rather than the whole market which would have included the women themselves.
Segmenting-targeting-positioningIn marketing, segmenting, targeting and positioning (STP) is a framework that implements market segmentation. Market segmentation is a process, in which groups of buyers within a market are divided and profiled according to a range of variables, which determine the market characteristics and tendencies. The S-T-P framework implements market segmentation in three steps: Segmenting means identifying and classifying consumers into categories called segments. Targeting identifies the most attractive segments, usually the ones most profitable for the business.
Loi de Dirichletthumb|right|250px|Plusieurs images de la densité de la loi de Dirichlet lorsque K=3 pour différents vecteurs de paramètres α. Dans le sens horaire à partir du coin supérieur gauche : α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). En probabilité et statistiques, la loi de Dirichlet, souvent notée Dir(α), est une famille de lois de probabilité continues pour des variables aléatoires multinomiales. Cette loi (ou encore distribution) est paramétrée par le vecteur α de nombres réels positifs et tire son nom de Johann Peter Gustav Lejeune Dirichlet.
Loi normale généraliséeEn théorie des probabilités et en statistique, la loi normale généralisée ou loi gaussienne généralisée désigne deux familles de lois de probabilité à densité dont les supports sont l'ensemble des réels. Cette loi rajoute un paramètre de forme à la loi normale. Pour les différencier, les deux familles seront appelées « version 1 » et « version 2 », ce ne sont cependant pas des appellations standards. La densité de probabilité des lois de cette famille est donnée par la formule : où est la fonction gamma, est un paramètre de position, est un paramètre d'échelle et est un paramètre de forme.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
Fonction de Wignervignette| Fonction de Wigner d'un état du type du "chat de Schrödinger" (mélange de 2 états opposés) La fonction de Wigner (également appelée distribution de quasi-probabilité de Wigner) a été introduite par Eugene Wigner en 1932 pour étudier les corrections quantiques à la mécanique statistique classique. L'objectif était de lier la fonction d'onde qui apparaît dans l'équation de Schrödinger à une distribution de probabilité dans l'espace des phases.
Compound Poisson distributionIn probability theory, a compound Poisson distribution is the probability distribution of the sum of a number of independent identically-distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. The result can be either a continuous or a discrete distribution. Suppose that i.e., N is a random variable whose distribution is a Poisson distribution with expected value λ, and that are identically distributed random variables that are mutually independent and also independent of N.