Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Médiane (statistiques)En théorie des probabilités et en statistiques, la médiane est une valeur qui sépare la moitié inférieure et la moitié supérieure des termes d’une série statistique quantitative ou d’une variable aléatoire réelle. On peut la définir aussi pour une variable ordinale. La médiane est un indicateur de tendance centrale. Par comparaison avec la moyenne, elle est insensible aux valeurs extrêmes mais son calcul est un petit peu plus complexe. En particulier, elle ne peut s’obtenir à partir des médianes de sous-groupes.
Estimateur de Laplace–BayesEn théorie des probabilités et en statistiques, l'estimateur de Laplace–Bayes (ou règle de succession de Laplace) est une formule permettant de donner une approximation du terme a posteriori de la formule de Bayes. Elle a été introduite au siècle pour répondre au problème : quelle la probabilité que le Soleil se lève demain ? Soit des variables aléatoires indépendantes à valeur binaire (0 ou 1). On suppose qu'elles suivent toutes une distribution de Bernouilli de même paramètre p.
Loi binomialeEn théorie des probabilités et en statistique, la loi binomiale modélise la fréquence du nombre de succès obtenus lors de la répétition de plusieurs expériences aléatoires identiques et indépendantes. Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès. Pour chaque expérience appelée épreuve de Bernoulli, on utilise une variable aléatoire qui prend la valeur 1 lors d'un succès et la valeur 0 sinon.
Asymétrie (statistiques)En théorie des probabilités et statistique, le coefficient d'asymétrie (skewness en anglais) correspond à une mesure de l’asymétrie de la distribution d’une variable aléatoire réelle. C’est le premier des paramètres de forme, avec le kurtosis (les paramètres basés sur les moments d’ordre 5 et plus n’ont pas de nom attribué). En termes généraux, l’asymétrie d’une distribution est positive si la queue de droite (à valeurs hautes) est plus longue ou grosse, et négative si la queue de gauche (à valeurs basses) est plus longue ou grosse.
Distribution multimodalevignette|Exemple de distribution bimodale de minerais d'or. X : teneur en g/t ; Y : production en tonnes. Le caractère bimodal définit deux groupes de populations statistiques résultant de deux phénomènes différents. En probabilités et statistique, une distribution multimodale est une distribution statistique présentant plusieurs modes. vignette| Histogramme bimodal vignette|Dans ce cas précis, une distribution bimodale un mélange de deux distributions normales avec la même variance mais des moyennes différentes.
Son numérique (musique)thumb|Échantillonnage (en gris) d'un signal analogique (en rouge). L'arrivée de l'informatique et du stockage d'information sous forme numérique a entraîné une véritable révolution dans le domaine musical. Cette révolution a commencé avec le CD audio, puis avec la compression des fichiers audios, puis les lecteurs dits MP3 et continue de nos jours avec l'intégration de la composante numérique dans le monde de la Hi-Fi et dans les lecteurs multimédias. Il y a pour le grand public plusieurs sources possibles pour obtenir de la musique sous forme numérique.
Minimum mean square errorIn statistics and signal processing, a minimum mean square error (MMSE) estimator is an estimation method which minimizes the mean square error (MSE), which is a common measure of estimator quality, of the fitted values of a dependent variable. In the Bayesian setting, the term MMSE more specifically refers to estimation with quadratic loss function. In such case, the MMSE estimator is given by the posterior mean of the parameter to be estimated.