Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Opérateur bornéEn mathématiques, la notion d'opérateur borné est un concept d'analyse fonctionnelle. Il s'agit d'une application linéaire L entre deux espaces vectoriels normés X et Y telle que l'image de la boule unité de X est une partie bornée de Y. On montre qu'ils s'identifient aux applications linéaires continues de X dans Y. L'ensemble des opérateurs bornés est muni d'une norme issue des normes de X et de Y, la norme d'opérateur. Une application linéaire L entre les espaces vectoriels normés X et Y est appelée opérateur borné quand l'ensemble est borné.
Join and meetIn mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of denoted and similarly, the meet of is the infimum (greatest lower bound), denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice.
Ordre monomialEn mathématiques, un ordre monomial est un ordre total sur l'ensemble des monômes d'un anneau de polynômes donné, compatible avec la multiplication, c'est-à-dire : Pour tout monôme , si deux monômes et satisfont selon l'ordre monomial, alors . Les ordres monomiaux sont le plus souvent utilisés pour le calcul des bases de Gröbner et la division multivariée. En particulier, la propriété dêtre une base de Gröbner est toujours relative à un ordre monomial spécifique.
Fonction d'AckermannDans la théorie de la récursivité, la fonction d'Ackermann (aussi appelée fonction d'Ackermann-Péter) est un exemple simple de fonction récursive non récursive primitive, trouvée en 1926 par Wilhelm Ackermann. Elle est souvent présentée sous la forme qu'en a proposée la mathématicienne Rózsa Péter, comme une fonction à deux paramètres entiers naturels comme arguments et qui retourne un entier naturel comme valeur, noté en général A(m, n).
Tessellation (computer graphics)In computer graphics, tessellation is the dividing of datasets of polygons (sometimes called vertex sets) presenting objects in a scene into suitable structures for rendering. Especially for real-time rendering, data is tessellated into triangles, for example in OpenGL 4.0 and Direct3D 11. A key advantage of tessellation for realtime graphics is that it allows detail to be dynamically added and subtracted from a 3D polygon mesh and its silhouette edges based on control parameters (often camera distance).
Modèle en cascadeLe modèle en cascade, ou « waterfall » en anglais, est une organisation des activités d'un projet sous forme de phases linéaires et séquentielles, où chaque phase correspond à une spécialisation des tâches et dépend des résultats de la phase précédente. Il comprend les phases d'exigences, de conception, de mise en œuvre et de mise en service. Le modèle en cascade est un cycle de vie de projet issu des industries manufacturières et du secteur de la construction, où une conception préalable est nécessaire, compte tenu des fortes contraintes matérielles et des coûts élevés afférents aux changements de la conception en cours de réalisation.
TétrationLa tétration (ou encore nappe exponentielle, hyperpuissance, tour de puissances, super-exponentiation ou hyper4) est une « exponentiation itérée ». C'est le premier hyperopérateur après l'exponentiation. Le mot-valise tétration a été forgé par Reuben Goodstein sur la base du préfixe tétra- (quatre) et itération. La tétration est utilisée pour l'écriture des grands nombres. Elle suit l'addition, la multiplication et l'exponentiation comme indiqué ci-après : addition multiplication exponentiation tétration avec chaque fois b apparitions de la lettre a.
Tutte embeddingIn graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average (or barycenter) of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations.
Surface de BoyLa surface de Boy, du nom de Werner Boy, mathématicien ayant été le premier à imaginer son existence en 1902, est une immersion du plan projectif réel dans l'espace usuel de dimension 3. Le plan projectif se définit comme l'espace quotient de par la relation d'équivalence qu'est la colinéarité. La surface de Boy peut aussi être « vue » comme une sphère dont on a recollé deux à deux les points antipodaux, ou encore un disque dont on a recollé deux à deux les points diamétralement opposés de son bord.