État fondamentalL'état fondamental est, en physique, une notion polysémique renvoyant généralement à un état de plus basse énergie pour un électron, ou de plus grande neutralité électrique pour un atome.vignette|Différents niveaux d'énergie d'un électron dans un atome : l'état fondamental et les états excités. Après avoir absorbé de l'énergie, un électron peut passer de l'état fondamental à un état excité de plus haute énergie. En physique quantique, les états fondamentaux d'un système sont les états quantiques de plus basse énergie.
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.
Opérateur bornéEn mathématiques, la notion d'opérateur borné est un concept d'analyse fonctionnelle. Il s'agit d'une application linéaire L entre deux espaces vectoriels normés X et Y telle que l'image de la boule unité de X est une partie bornée de Y. On montre qu'ils s'identifient aux applications linéaires continues de X dans Y. L'ensemble des opérateurs bornés est muni d'une norme issue des normes de X et de Y, la norme d'opérateur. Une application linéaire L entre les espaces vectoriels normés X et Y est appelée opérateur borné quand l'ensemble est borné.
Continuous linear operatorIn functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous function (topology) and Discontinuous linear map Bounded operator Suppose that is a linear operator between two topological vector spaces (TVSs). The following are equivalent: is continuous.
Opérateur non bornéEn analyse fonctionnelle, un opérateur non borné est une application linéaire partiellement définie. Plus précisément, soient X, Y deux espaces vectoriels. Un tel opérateur est donné par un sous-espace dom(T) de X et une application linéaire dont l'ensemble de définition est dom(T) et l'ensemble d'arrivée est Y. Considérons X = Y = L(R) et l'espace de Sobolev H(R) des fonctions de carré intégrable dont la dérivée au sens des distributions appartient, elle aussi, à L(R).
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Opérateur compactEn mathématiques, et plus précisément en analyse fonctionnelle, un opérateur compact est une application continue entre deux espaces vectoriels topologiques X et Y envoyant les parties bornées de X sur les parties relativement compactes de Y. Les applications linéaires compactes généralisent les applications linéaires continues de rang fini. La théorie est particulièrement intéressante pour les espaces vectoriels normés ou les espaces de Banach. En particulier, dans un espace de Banach, l'ensemble des opérateurs compacts est fermé pour la topologie forte.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Espace à quatre dimensionsframe|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
Endomorphisme autoadjointEn mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien.