Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Diffraction-limited systemIn optics, any optical instrument or system a microscope, telescope, or camera has a principal limit to its resolution due to the physics of diffraction. An optical instrument is said to be diffraction-limited if it has reached this limit of resolution performance. Other factors may affect an optical system's performance, such as lens imperfections or aberrations, but these are caused by errors in the manufacture or calculation of a lens, whereas the diffraction limit is the maximum resolution possible for a theoretically perfect, or ideal, optical system.
Diffraction de FraunhoferEn optique et électromagnétisme, la 'diffraction de Fraunhofer, encore nommée diffraction en champ lointain' ou approximation de Fraunhofer, est l'observation en champ lointain de la figure de diffraction par un objet diffractant. Cette observation peut aussi se faire dans le plan focal image d'une lentille convergente. Elle s'oppose à la diffraction de Fresnel qui décrit le même phénomène de diffraction mais en champ proche.
Diffraction from slitsDiffraction processes affecting waves are amenable to quantitative description and analysis. Such treatments are applied to a wave passing through one or more slits whose width is specified as a proportion of the wavelength. Numerical approximations may be used, including the Fresnel and Fraunhofer approximations. Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).
Coordonnées cartésiennesUn système de coordonnées cartésiennes permet de déterminer la position d'un point dans un espace affine (droite, plan, espace de dimension 3, etc.) muni d'un repère cartésien. Le mot cartésien vient du mathématicien et philosophe français René Descartes. Il existe d'autres systèmes de coordonnées permettant de repérer un point dans le plan ou dans l'espace. Sur une droite affine , un repère est la donnée de : une origine , c'est-à-dire un point distingué de ; un vecteur de la droite vectorielle directrice .
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
Composantes d'un vecteurvignette|Composantes d'un vecteur dans un espace géométrique à trois dimensions, x, y et z. Dans le cas du concept géométrique classique de vecteur, il existe une identification complète entre ses « composantes » et les « coordonnées » qui le représentent. Cependant, il existe d'autres types d'espaces vectoriels (comme, par exemple, l'ensemble des polynômes d'ordre n), dans lesquels le concept de coordonnée n'a pas la généralité de l'idée de composante.
Lentille optiquevignette|Une bougie se projetant sur une table par un presse-papier formant lentille. Une lentille optique est un composant fait d'un matériau généralement et transparent pour la lumière dans le domaine spectral d'intérêt. C'est le plus souvent un type de verre optique, ou des verres plus classiques, des plastiques, des matériaux organiques, voire des métalloïdes tels que le germanium. Les lentilles sont destinées à faire converger ou diverger la lumière.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.