Méthode des caractéristiquesEn mathématiques, la méthode des caractéristiques est une technique permettant de résoudre les équations aux dérivées partielles. Particulièrement adaptée aux problèmes de transport, elle est utilisée dans de nombreux domaines tels que la mécanique des fluides ou le transport de particules. Dans certains cas particuliers, la méthode des caractéristiques peut permettre la résolution purement analytique de l'équation aux dérivées partielles.
Paramètres SLes paramètres S (de l'anglais Scattering parameters), coefficients de diffraction ou de répartition sont utilisés en hyperfréquences, en électricité ou en électronique pour décrire le comportement électrique de réseaux électriques linéaires en fonction des signaux d'entrée. Ces paramètres font partie d'une famille de formalismes similaires, utilisés en électronique, en physique ou en optique : les paramètres Y, les paramètres Z, les paramètres H, les paramètres T ou les paramètres ABCD.
Équationvignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.
Loi de conservationvignette|redresse|Emmy Noether est une mathématicienne allemande dont le théorème explique le lien fondamental entre la symétrie et les lois de conservation. En physique, une loi de conservation exprime qu'une propriété mesurable particulière d'un système physique reste constante au cours de l'évolution de ce système.
Fonction elliptique de WeierstrassEn analyse complexe, les fonctions elliptiques de Weierstrass forment une classe importante de fonctions elliptiques c'est-à-dire de fonctions méromorphes doublement périodiques. Toute fonction elliptique peut être exprimée à l'aide de celles-ci. Supposons que l'on souhaite fabriquer une telle fonction de période 1. On peut prendre une fonction quelconque, définie sur [0, 1] et telle que f(0) = f(1) et la prolonger convenablement. Un tel procédé a des limites. Par exemple, on obtiendra rarement des fonctions analytiques de cette façon.
Courbe elliptiqueEn mathématiques, une courbe elliptique est un cas particulier de courbe algébrique, munie entre autres propriétés d'une addition géométrique sur ses points. Les courbes elliptiques ont de nombreuses applications dans des domaines très différents des mathématiques : elles interviennent ainsi en mécanique classique dans la description du mouvement des toupies, en théorie des nombres dans la démonstration du dernier théorème de Fermat, en cryptologie dans le problème de la factorisation des entiers ou pour fabriquer des codes performants.
Admittance parametersAdmittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters.
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Espace (notion)L'espace se présente dans l'expérience quotidienne comme une notion de géométrie et de physique qui désigne une étendue, abstraite ou non, ou encore la perception de cette étendue. Conceptuellement, il est le plus souvent synonyme de contenant aux bords indéterminés. Le phénomène reste en lui-même indéterminé car nous ne savons pas s'il manifeste une structure englobante rassemblant toutes les choses et les lieux ou bien s'il ne s'agit que d'un phénomène dérivé de la multiplicité des lieux.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.