Caractère d'une représentation d'un groupe finiEn mathématiques le caractère d'une représentation d'un groupe fini est un outil utilisé pour analyser les représentations d'un groupe fini. Le caractère d'une représentation (V, ρ) d'un groupe G correspond à l'application de G dans le corps de l'espace de la représentation qui à un élément s associe la trace de l'image de s par ρ. Cette définition n'est pas compatible avec celle des caractères d'un groupe en général qui ne prend ses valeurs que dans l'ensemble des complexes non nuls.
Modular representation theoryModular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field K of positive characteristic p, necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory.
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Formule des caractères de WeylEn théorie des représentations, la formule des caractères de Weyl est une description des caractères des représentations irréductibles des groupes de Lie compacts en fonction de leurs plus haut poids. Elle a été prouvée par Hermann Weyl. Il existe une formule étroitement liée pour le caractère d'une représentation irréductible d'une algèbre de Lie semi-simple. Dans l'approche de Weyl de la théorie des représentations des groupes de Lie compacts connexes, la preuve de la formule des caractères est une étape clé pour prouver que chaque élément entier dominant apparaît effectivement comme le plus haut poids d'une représentation irréductible.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
Displacement mappingthumb|220px|right|Displacement mapping Le « displacement mapping » est une technique similaire au bump mapping, normal mapping, et au parallax mapping, mais qui utilise, contrairement aux autres techniques, une texture (qui peut être procédurale) ou ce que l'on appelle une « height map » (texture créant du relief dans certains cas) qui modifiera la position géométrique des points de la surface à laquelle on applique cette « displacement map ». Ces positions géométriques seront déterminées selon la valeur (représentée par une couleur) affectée à la texture.
Caractère (mathématiques)En mathématiques, un caractère est une notion associée à la théorie des groupes. Un caractère sur un groupe G est un morphisme de G dans le groupe multiplicatif K* d'un corps commutatif K. Les caractères permettent une généralisation de l'analyse harmonique à de nombreux groupes. Il correspond à un cas particulier de représentation, celle complexe de degré 1. Par exemple, un « caractère de Dirichlet modulo n » est un caractère du groupe fini (Z/nZ).
Champ de hauteurEn infographie, un champ de hauteur, ou heightmap sous son appellation anglaise, est une stockant un déplacement par rapport à une surface, dans le but de réaliser ensuite un rendu tridimensionnel. vignette|Champ de hauteur créé avec Terragen. vignette|Le même champ de hauteur converti en un mesh 3D. Un champ de hauteur classique est une image matricielle ne contenant qu'un seul canal, et est donc souvent visualisé comme une image en nuances de gris.
Placage de reliefLe placage de relief, ou topographie d’aspérité également nommé sous son appellation anglaise de bump mapping, est un terme informatique qui désigne la technique utilisée en infographie et qui sert à donner du relief aux modèles 2D ou 3D, ou aux textures. , où la technique consiste à modifier la normale de la surface. Les termes placage de rugosité et . Le placage de relief est une technique permettant d'ajouter du relief à une surface grâce à l'interaction entre la lumière de l'environnement et une texture irrégulière appliquée sur cette surface.
Texture (image de synthèse)Dans le domaine de la , une texture est une image en deux dimensions (2D) que l'on va appliquer sur une surface (2D) ou un volume en trois dimensions (3D) de manière à habiller cette surface ou ce volume. En simplifiant, on peut l'assimiler à un papier peint très plastique et déformable que l'on applique en 3D en spécifiant la transformation géométrique que subit chaque pixel du papier pour s'appliquer sur l'élément 3D. Le pixel ainsi manipulé en 3D est appelé texel.