Groupe de GaloisEn mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d'une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant K invariant. Le groupe de Galois est souvent noté Gal(L/K). Si l'extension possède de bonnes propriétés, c’est-à-dire si elle est séparable et normale, on parle alors d'extension de Galois et les hypothèses du théorème fondamental de la théorie de Galois sont réunies.
Corps de décompositionEn mathématiques et plus précisément en algèbre dans la théorie des corps commutatifs, un corps de décomposition, ou parfois corps des racines ou encore corps de déploiement, d'un polynôme P non nul est une extension de corps minimale sur laquelle P est scindé. On montre qu'un polynôme non nul possède toujours un corps de décomposition, unique à isomorphisme près, et que celui-ci est une extension finie et normale. Si de plus le polynôme est séparable, c'est une extension de Galois.
Théorie de GaloisEn mathématiques et plus précisément en algèbre, la théorie de Galois est l'étude des extensions de corps commutatifs, par le biais d'une correspondance avec des groupes de transformations sur ces extensions, les groupes de Galois. Cette méthode féconde, qui constitue l'exemple historique, a essaimé dans bien d'autres branches des mathématiques, avec par exemple la théorie de Galois différentielle, ou la théorie de Galois des revêtements. Cette théorie est née de l'étude par Évariste Galois des équations algébriques.
Extension de GaloisEn mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension normale séparable. L'ensemble des automorphismes de l'extension possède une structure de groupe appelée groupe de Galois. Cette structure de groupe caractérise l'extension, ainsi que ses sous-corps. Les extensions de Galois sont des structures largement utilisées pour la démonstration de théorèmes en théorie algébrique des nombres, comme le dernier théorème de Fermat, ou en théorie de Galois pure, comme le théorème d'Abel-Ruffini.
Correspondance de GaloisEn mathématiques, une correspondance de Galois antitone est une généralisation, pour deux ordres partiels quelconques, de la correspondance entre sous-corps d'une extension galoisienne et sous-groupes de son groupe de Galois. Une correspondance de Galois isotone se définit de façon analogue, en inversant l'ordre sur le deuxième ensemble. Cette notion est reliée à celle d'opérateur de clôture. Soient et des fonctions définies sur deux ensembles ordonnés et . On vérifie facilement l'équivalence des deux définitions suivantes.
Groupe de Galois absoluEn mathématiques, le groupe de Galois absolu d'un corps commutatif K est le groupe de Galois d'une clôture séparable (extension algébrique séparable maximale, nécessairement normale donc galoisienne) Ksep du corps K. Dans le cas d'un corps parfait (et donc en particulier en caractéristique nulle), une clôture séparable coïncide avec une clôture algébrique. La compréhension du groupe de Galois absolu du corps des nombres rationnels est un problème important en théorie algébrique des nombres.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Équation polynomialeEn mathématiques, une équation polynomiale, ou équation algébrique, est une équation de la forme : où P est un polynôme. Voici un exemple d'équation simple avec une seule inconnue : Usuellement, le terme équation polynomiale désigne une équation avec une seule inconnue (notée ici x) : où l'entier naturel n et les , appelés coefficients de l’équation, sont connus. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs valeurs dans n’importe quel anneau.
Représentation galoisienneLa théorie des représentations galoisiennes est l'application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces modules seront par exemple des groupes d'unités, des groupes des classes, ou des groupes de Galois eux-mêmes. En théorie algébrique des nombres classique, soit L une extension galoisienne d'un corps de nombres K, et soit G le groupe de Galois correspondant.
Closure operatorIn mathematics, a closure operator on a set S is a function from the power set of S to itself that satisfies the following conditions for all sets {| border="0" |- | | (cl is extensive), |- | | (cl is increasing), |- | | (cl is idempotent). |} Closure operators are determined by their closed sets, i.e., by the sets of the form cl(X), since the closure cl(X) of a set X is the smallest closed set containing X. Such families of "closed sets" are sometimes called closure systems or "Moore families".