Topologie grossièreEn mathématiques et plus précisément en topologie, la topologie grossière (ou topologie triviale) associée à un ensemble X est la topologie sur X dont les seuls ouverts sont l'ensemble vide et X. Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble ; intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Fonction bornéedroite|vignette| Schéma d'une fonction bornée (rouge) et d'une fonction non bornée (bleu). Intuitivement, le graphe d'une fonction bornée reste dans une bande horizontale, contrairement au graphe d'une fonction non bornée. En mathématiques, une fonction est dite bornée si est borné. Pour une fonction f définie sur un ensemble X et à valeurs réelles ou complexes, cela revient à dire qu'il existe un nombre réel M tel que pour tout x dans X, Une fonction à valeurs réelles est dite majorée ( minorée) si l'ensemble de ses valeurs possède un majorant ( minorant) réel.
Transformation de HilbertEn mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.
Mesure de JordanEn mathématiques, la mesure de Peano-Jordan est une extension de la notion de taille (longueur, aire, volume), aisément définie pour des domaines simples tels que le rectangle ou le parallélépipède, à des formes plus compliquées. La mesure de Jordan s'avère trop restrictive pour certains ensembles qu'on pourrait souhaiter être mesurables. Pour cette raison, il est maintenant plus fréquent de travailler avec la mesure de Lebesgue, qui est une extension de la mesure de Jordan à une plus grande classe d'ensembles.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Group algebra of a locally compact groupIn functional analysis and related areas of mathematics, the group algebra is any of various constructions to assign to a locally compact group an operator algebra (or more generally a Banach algebra), such that representations of the algebra are related to representations of the group. As such, they are similar to the group ring associated to a discrete group. If G is a locally compact Hausdorff group, G carries an essentially unique left-invariant countably additive Borel measure μ called a Haar measure.
Mesure simplement additiveEn théorie de la mesure, une mesure simplement additive est une version faible d'une mesure : au lieu d'être sigma-additive comme la mesure classique, elle est additive seulement pour l'union d'un nombre fini d'ensembles disjoints. Elle correspond davantage à l'idée intuitive que l'on se fait de la notion de mesure de distance parcourue, de mesure de surface, de mesure de volume ou de mesure de poids. En théorie de l'intégration, la notion de mesure simplement additive conduit à la notion d'intégrale de Riemann, alors que la notion de mesure sigma-additive conduit à la notion d'intégrale de Lebesgue.
Mesure de DiracIn mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X.
Groupe compactEn mathématiques, et plus particulièrement en analyse harmonique abstraite, un groupe compact est un groupe topologique dont l'espace topologique sous-jacent est compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité simplifie l'étude. Ces groupes comprennent notamment les groupes finis et les groupes de Lie compacts. Tout groupe compact est limite projective de groupes de Lie compacts. Tout groupe discret fini est un groupe compact. En effet, tout espace discret fini est compact.