Théorie des bifurcationsLa théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
Bifurcation de HopfDans la théorie des bifurcations, une bifurcation de Hopf ou de Poincaré–Andronov–Hopf, des noms de Henri Poincaré, Eberhard Hopf, et Aleksandr Andronov, est une bifurcation locale dans laquelle un point fixe d'un système dynamique perd sa stabilité tandis qu'une paire de valeurs propres complexes conjuguées de la linéarisation autour du point fixe franchissent l'axe imaginaire du plan complexe. Pour un tour d'horizon plus général sur les bifurcations de Hopf et leurs applications notamment en physique et en électronique, voir.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Diagramme de bifurcationdroite|vignette|Diagramme de bifurcation de la suite logistique. En mathématiques, et en particulier dans l'étude des systèmes dynamiques, un diagramme de bifurcation illustre les valeurs visitées asymptotiquement (points fixes, points périodiques, attracteurs chaotiques) par un système en fonction d'un paramètre. Fichier:Bifurcation DiagramB.png|Diagramme de bifurcation pour l'[[attracteur de Rössler]]. Fichier:Henon bifurcation map b=0.3.png|Diagramme de bifurcation pour l'[[attracteur de Hénon]].
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Period-doubling bifurcationIn dynamical systems theory, a period-doubling bifurcation occurs when a slight change in a system's parameters causes a new periodic trajectory to emerge from an existing periodic trajectory—the new one having double the period of the original. With the doubled period, it takes twice as long (or, in a discrete dynamical system, twice as many iterations) for the numerical values visited by the system to repeat themselves. A period-halving bifurcation occurs when a system switches to a new behavior with half the period of the original system.
Modèles du neurone biologiquevignette|390x390px|Fig. 1. Dendrites, soma et axone myélinisé, avec un flux de signal des entrées aux dendrites aux sorties aux bornes des axones. Le signal est une courte impulsion électrique appelée potentiel d'action ou impulsion. vignette|Figure 2. Évolution du potentiel postsynaptique lors d'une impulsion. L'amplitude et la forme exacte de la tension peut varier selon la technique expérimentale utilisée pour acquérir le signal.
Pitchfork bifurcationIn bifurcation theory, a field within mathematics, a pitchfork bifurcation is a particular type of local bifurcation where the system transitions from one fixed point to three fixed points. Pitchfork bifurcations, like Hopf bifurcations, have two types – supercritical and subcritical. In continuous dynamical systems described by ODEs—i.e. flows—pitchfork bifurcations occur generically in systems with symmetry. The normal form of the supercritical pitchfork bifurcation is For , there is one stable equilibrium at .
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Attracteur de RösslerL'attracteur de Rössler est l'attracteur produit par un système dynamique constitué de trois équations différentielles ordinaires contenant un terme non linéaire introduit en 1976 par Otto E. Rössler. Pour certaines valeurs des paramètres, ces équations différentielles produisent un attracteur chaotique. C'est un exemple d'attracteur étrange (selon l'appellation de David Ruelle ) et qui présente des propriétés fractales. Otto Rössler a initialement obtenu un système dynamique produisant un attracteur chaotique à partir d'une réaction chimique théorique.