Loi gamma-normaleEn théorie des probabilités et en statistiques, la loi gamma-normale (ou Gamma- Gaussienne) est une distribution bivariée continue à quatre paramètres. Elle est la prieure conjuguée de la loi normale de moyenne et variance inconnues. Soit une paire de variable aléatoires (X,T). Si la distribution conditionnelle de X sachant T est normale de moyenne et variance et si la distribution marginale de T est une loi gamma alors (X,T) suit une loi gamma-normale, que l'on note La fonction de densité conjointe de (X,T) a la forme Par définition, la distribution marginale de est une loi gamma.
Loi de FisherEn théorie des probabilités et en statistiques, la loi de Fisher ou encore loi de Fisher-Snedecor ou encore loi F de Snedecor est une loi de probabilité continue. Elle tire son nom des statisticiens Ronald Aylmer Fisher et George Snedecor. La loi de Fisher survient très fréquemment en tant que loi de la statistique de test lorsque l'hypothèse nulle est vraie, dans des tests statistiques, comme les tests du ratio de vraisemblance, dans les tests de Chow utilisés en économétrie, ou encore dans l'analyse de la variance (ANOVA) via le test de Fisher.
Loi de RiceEn statistiques et théorie des probabilités, la loi de Rice, nommée d'après (1907–1986), est une loi de probabilité à densité (c'est-à-dire continue). C'est une généralisation de la loi de Rayleigh utilisée pour décrire le comportement d'un signal radio qui se propage selon plusieurs chemins (multipath) avant d'être reçu par une antenne. Soient deux variables de Gauss centrées, indépendantes, de même variance σ.
Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Loi du χ²En statistiques et en théorie des probabilités, la loi du centrée (prononcé « khi carré » ou « khi-deux ») avec k degrés de liberté est la loi de la somme de carrés de k lois normales centrées réduites indépendantes. La loi du est utilisée en inférence statistique et pour les tests statistiques notamment le test du χ2. La loi du χ2 non centrée généralise la loi du . Soient k variables aléatoires X, ... , X indépendantes suivant la loi normale centrée et réduite, c'est-à-dire la loi normale de moyenne 0 et d'écart-type 1.
Loi du demi-cercleEn théorie des probabilités et en statistique, la loi du demi-cercle ou loi du demi-cercle de Wigner est une loi de probabilité sur l'intervalle [-R,R] et dont le graphe de la densité de probabilité est un demi-cercle de rayon R, centré en 0 et convenablement renormalisé, ce qui en fait, en fait, une ellipse. En anglais, cette loi est nommée Wigner semicircle distribution, d'après le nom du physicien Eugene Wigner. En théorie des nombres, la loi du demi-cercle est parfois appelée loi de Satō-Tate, voir la conjecture de Satō-Tate.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi sécante hyperboliqueEn théorie des probabilités et en statistique, la loi sécante hyperbolique est une loi de probabilité à densité dont la densité de probabilité et la fonction caractéristique sont proportionnelles à la fonction sécante hyperbolique. La densité de la loi sécante hyperbolique est donnée par la transformation suivante de la fonction sécante hyperbolique : La fonction de répartition de la loi sécante hyperbolique est : où arctan est la fonction trigonométrique inverse arc tangente.
Échantillonnage stratifiévignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire. Le groupe 1 est différent du groupe 2. Ensuite, choisissez un EAS (échantillon aléatoire simple) distinct dans chaque strate et combinez ces EAS pour former l'échantillon complet. L'échantillonnage aléatoire stratifié est utilisé pour produire des échantillons non biaisés.
Loi binomialeEn théorie des probabilités et en statistique, la loi binomiale modélise la fréquence du nombre de succès obtenus lors de la répétition de plusieurs expériences aléatoires identiques et indépendantes. Plus mathématiquement, la loi binomiale est une loi de probabilité discrète décrite par deux paramètres : n le nombre d'expériences réalisées, et p la probabilité de succès. Pour chaque expérience appelée épreuve de Bernoulli, on utilise une variable aléatoire qui prend la valeur 1 lors d'un succès et la valeur 0 sinon.