Schéma noethérienEn géométrie algébrique, les schémas noethériens sont aux schémas ce que les anneaux noethériens sont aux anneaux commutatifs. Ce sont les schémas qui possèdent un certain nombre de propriétés de finitude. De nombreux résultats fondamentaux en géométrie algébrique sont montrés dans le cadre des schémas noethériens. Il est généralement considéré comme raisonnable de travailler dans la catégorie des schémas noethériens. Un schéma affine Spec A est noethérien si A est un anneau noethérien.
EllipsoïdeEn mathématiques, et plus précisément en géométrie euclidienne, un ellipsoïde est une surface du second degré de l'espace euclidien à trois dimensions. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de point à l'infini. L'ellipsoïde admet un centre et au moins trois plans de symétrie. L'intersection d'un ellipsoïde avec un plan est une ellipse, un point ou l'ensemble vide.
CubeEn géométrie euclidienne, un cube est un prisme droit dont toutes les faces sont carrées donc égales et superposables. Le cube figure parmi les solides les plus remarquables de l'espace. C'est le seul des cinq solides de Platon ayant exactement 6 faces, 12 arêtes et 8 sommets. Son autre nom est « hexaèdre régulier ». Le cube est un zonoèdre à trois générateurs. Comme il a quatre sommets par face et trois faces par sommet, son symbole de Schläfli est {4,3}. L'étymologie du mot cube est grecque ; cube provient de kubos, le dé.
Algorithme de Primthumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.
Duplication du cubevignette|upright=1.2|Un cube de volume unitaire (gauche) et un cube de volume 2 (droite).À partir de la figure de gauche, il est impossible de construire par les moyens géométriques traditionnels le cube de droite.|alt=croquis de 2 cubes En mathématiques, la duplication du cube, ou problème de Délos, est un problème géométrique classique faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la trisection de l'angle. Il consiste à construire à la règle et au compas un cube de volume double de celui d'un cube donné.
Geodesics on an ellipsoidThe study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry .
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Schéma (géométrie algébrique)En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.