Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Géométrie elliptiqueUne géométrie elliptique est une géométrie non euclidienne. Les axiomes sont identiques à ceux de la géométrie euclidienne à l'exception de l'axiome des parallèles : en géométrie elliptique, étant donné une droite et un point extérieur à cette droite, il n'existe aucune droite parallèle à cette droite passant par ce point. Il est équivalent de dire que la somme des angles d'un triangle est toujours supérieure à .
Géométrie synthétiqueLa géométrie synthétique ou géométrie pure est fondée sur une approche axiomatique (donc, « purement logique ») de la géométrie. Elle constitue une branche de la géométrie étudiant diverses propriétés et divers théorèmes uniquement par des méthodes d'intersections, de transformations et de constructions. Elle s'oppose à la géométrie analytique et refuse systématiquement l'utilisation des propriétés analytiques des figures ou l'appel aux coordonnées. Ses concepts principaux sont l'intersection, les transformations y compris par polaires réciproques, la logique.
Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
HypercycleEn géométrie hyperbolique, un hypercycle est une courbe formée de tous les points situés à la même distance, appelée le rayon, d'une droite fixée (appelée son axe). Les hypercycles peuvent être considérés comme des cercles généralisés, mais possèdent aussi certaines propriétés des droites euclidiennes ; dans le modèle du disque de Poincaré, les hypercycles sont représentés par des arcs de cercles. En géométrie euclidienne, l'ensemble de tous les points situés à distance donnée d'une droite donnée est formée de deux parallèles à cette droite (c'est cette propriété que Clairaut prend comme définition du parallèlisme).
Matrice symétriquevignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).
Couplage croiséEn chimie organique, un couplage croisé est une réaction de couplage entre deux fragments moléculaires par formation d'une liaison carbone-carbone sous l'effet d'un catalyseur organométallique. Par exemple, un composé , où R est un fragment organique et M un métal du groupe principal, réagit avec un halogénure organique , où X est un halogène, pour former un produit . Les chimistes Richard Heck, Ei-ichi Negishi et Akira Suzuki ont reçu le prix Nobel de chimie 2010 pour avoir développé des réactions de couplage catalysées au palladium.
Réaction de couplageEn chimie organique, une réaction de couplage est une transformation qui permet l'association de deux radicaux hydrocarbures, en général à l'aide d'un catalyseur métallique. Deux classifications sont possibles en fonction de la nature du produit formé ou de celle des réactifs mis en jeu : dans le premier cas, si le produit est symétrique (formé par l'association de deux molécules identiques), on parle d'homocouplage. Il s'agit en général de la réaction d'un halogénure aromatique avec une deuxième molécule identique ou de celle d'un organométallique de la même manière.
Couplage de HiyamaLe couplage de Hiyama est une réaction de couplage entre un organosilane et un halogénure organique ou un triflate, catalysée par du palladium parfois assisté par du nickel. Ce couplage a été décrit pour la première fois par Yasuo Hatanaka et Tamejiro Hiyama en 1988. Dans la publication initiale de 1988, le 1-iodonaphtalène réagit avec le triméthylvinylsilane pour produire le 1-vinylnaphtalène avec une catalyse au chlorure d'allylpalladium. Cette réaction dispose de plusieurs avantages.