Interpolation numériqueEn analyse numérique (et dans son application algorithmique discrète pour le calcul numérique), l'interpolation est une opération mathématique permettant de remplacer une courbe ou une fonction par une autre courbe (ou fonction) plus simple, mais qui coïncide avec la première en un nombre fini de points (ou de valeurs) donnés au départ. Suivant le type d'interpolation, outre le fait de coïncider en un nombre fini de points ou de valeurs, il peut aussi être demandé à la courbe ou à la fonction construite de vérifier des propriétés supplémentaires.
Interpolation polynomialeEn mathématiques, en analyse numérique, l'interpolation polynomiale est une technique d'interpolation d'un ensemble de données ou d'une fonction par un polynôme. En d'autres termes, étant donné un ensemble de points (obtenu, par exemple, à la suite d'une expérience), on cherche un polynôme qui passe par tous ces points, p(xi) = yi, et éventuellement vérifie d'autres conditions, de degré si possible le plus bas. Cependant, dans le cas de l'interpolation lagrangienne, par exemple, le choix des points d'interpolation est critique.
Interpolation multivariéeEn analyse numérique, linterpolation multivariée ou linterpolation spatiale désigne l'interpolation numérique de fonctions de plus d'une variable. Le problème est similaire à celui de l'interpolation polynomiale sur un intervalle réel : on connait les valeurs d'une fonction à interpoler aux points et l'objectif consiste à évaluer la valeur de la fonction en des points . L'interpolation multivariée est notamment utilisée en géostatistique, où elle est utilisée pour reconstruire les valeurs d'une variable régionalisée sur un domaine à partir d'échantillons connus en un nombre limité de points.
Interpolation au plus proche voisinLinterpolation au plus proche voisin (ou interpolation arrondie) est une méthode simple d'interpolation numérique d'un ensemble de points en dimension 1 ou supérieure (interpolation multivariée). Le problème de l'interpolation consiste à calculer une valeur approchée d'une fonction en un point quelconque à partir des valeurs de la fonction données en des points définis. L'algorithme du plus proche voisin détermine la valeur recherchée comme étant égale à la valeur au point le plus proche, sans considérer les autres valeurs connues, construisant ainsi une fonction constante par morceaux.
Interpolation bilinéaireL'interpolation bilinéaire est une méthode d'interpolation pour les fonctions de deux variables sur une grille régulière. Elle permet de calculer la valeur d'une fonction en un point quelconque, à partir de ses deux plus proches voisins dans chaque direction. C'est une méthode très utilisée en pour le , qui permet d'obtenir de meilleurs résultats que l'interpolation par plus proche voisin, tout en restant de complexité raisonnable.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.