Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Théorie des anneauxEn mathématiques, la théorie des anneaux porte sur l'étude de structures algébriques qui imitent et étendent les entiers relatifs, appelées anneaux. Cette étude s'intéresse notamment à la classification de ces structures, leurs représentations, et leurs propriétés. Développée à partir de la fin du siècle, notamment sous l'impulsion de David Hilbert et Emmy Noether, la théorie des anneaux s'est trouvée être fondamentale pour le développement des mathématiques au siècle, au travers de la géométrie algébrique et de la théorie des nombres notamment, et continue de jouer un rôle central en mathématiques, mais aussi en cryptographie et en physique.
Nombre complexe déployéEn mathématiques, les nombres complexes déployés ou fendus forment un anneau commutatif non-intègre, extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence-clef entre les deux est que la multiplication des nombres complexes (usuels) respecte la norme euclidienne standard (carrée) : sur alors que la multiplication des nombres complexes déployés, quant à elle, respecte la norme de Minkowski ou norme lorentzienne (carrée) Les nombres complexes déployés ont beaucoup d'autres noms, voir la section des synonymes ci-dessous.
Split-biquaternionIn mathematics, a split-biquaternion is a hypercomplex number of the form where w, x, y, and z are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient w, x, y, z spans two real dimensions, the split-biquaternion is an element of an eight-dimensional vector space. Considering that it carries a multiplication, this vector space is an algebra over the real field, or an algebra over a ring where the split-complex numbers form the ring.
CoquaternionEn mathématiques et en algèbre abstraite, un coquaternion est une idée mise en avant par James Cockle en 1849. Comme les quaternions de Hamilton inventés en 1843, ils forment un espace vectoriel réel à quatre dimensions muni d'une opération multiplicative. À la différence de l'algèbre des quaternions, les coquaternions peuvent avoir des diviseurs de zéro, des éléments idempotents ou nilpotents. L'ensemble forme une base. Les produits de coquaternion de ces éléments sont Avec ces produits l'ensemble est isomorphe au groupe diédral d'un carré.
Idempotent (ring theory)In ring theory, a branch of mathematics, an idempotent element or simply idempotent of a ring is an element a such that a2 = a. That is, the element is idempotent under the ring's multiplication. Inductively then, one can also conclude that a = a2 = a3 = a4 = ... = an for any positive integer n. For example, an idempotent element of a matrix ring is precisely an idempotent matrix. For general rings, elements idempotent under multiplication are involved in decompositions of modules, and connected to homological properties of the ring.
Anneau topologiqueEn mathématiques, un anneau topologique est un anneau muni d'une topologie compatible avec les opérations internes, c'est-à-dire telle que l'addition, l'application opposée et la multiplication soient continues. Un corps topologique est un corps muni d'une topologie qui rend continues l'addition, la multiplication et l'application inverse. Ces structures étendent la notion de groupe topologique. Tous les corps de nombres usuels (rationnels, réels, complexes, p-adiques) ont une ou plusieurs topologies classiques qui en font des corps topologiques.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Microscopie à sonde localeLa microscopie à sonde locale (MSL) ou microscopie en champ proche (MCP) ou scanning probe microscopy (SPM) en anglais est une technique de microscopie permettant de cartographier le relief (nano-topographie) ou une autre grandeur physique en balayant la surface à imager à l'aide d'une pointe très fine (la pointe est idéalement un cône se terminant par un seul atome). Le pouvoir de résolution obtenu par cette technique permet d'observer jusqu'à des atomes, ce qui est physiquement impossible avec un microscope optique, quel que soit son grossissement.
Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.