N-sphèreEn géométrie, la sphère de dimension n, l'hypersphère ou n-sphère est une généralisation de la sphère à un espace euclidien de dimension quelconque. L'hypersphère constitue un des exemples les plus simples de variété, elle est plus précisément une hypersurface de l'espace euclidien , notée en général . Soient E un espace euclidien de dimension n + 1, A un point de E, et R un nombre réel strictement positif. On appelle hypersphère de centre A et de rayon R l'ensemble des points M dont la distance à A vaut R.
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Multidimensional discrete convolutionIn signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space. It is also a special case of convolution on groups when the group is the group of n-tuples of integers. Similar to the one-dimensional case, an asterisk is used to represent the convolution operation.
3-sphèrevignette|300 px|La 3-sphère en rotation, projetée dans R3. En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
Multivariate kernel density estimationKernel density estimation is a nonparametric technique for density estimation i.e., estimation of probability density functions, which is one of the fundamental questions in statistics. It can be viewed as a generalisation of histogram density estimation with improved statistical properties. Apart from histograms, other types of density estimators include parametric, spline, wavelet and Fourier series. Kernel density estimators were first introduced in the scientific literature for univariate data in the 1950s and 1960s and subsequently have been widely adopted.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.