Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Semisimple representationIn mathematics, specifically in representation theory, a semisimple representation (also called a completely reducible representation) is a linear representation of a group or an algebra that is a direct sum of simple representations (also called irreducible representations). It is an example of the general mathematical notion of semisimplicity. Many representations that appear in applications of representation theory are semisimple or can be approximated by semisimple representations.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Espace LpEn mathématiques, un espace L est un espace vectoriel de classes des fonctions dont la puissance d'exposant p est intégrable au sens de Lebesgue, où p est un nombre réel strictement positif. Le passage à la limite de l'exposant aboutit à la construction des espaces L de fonctions bornées. Les espaces L sont appelés espaces de Lebesgue. Identifiant les fonctions qui ne diffèrent que sur un ensemble négligeable, chaque espace L est un espace de Banach lorsque l'exposant est supérieur ou égal à 1.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Représentation unitaireEn mathématiques, une représentation unitaire d'un groupe G est une représentation linéaire π de G sur un espace de Hilbert complexe V telle que π(g) est un opérateur unitaire pour tout g ∈ G. La théorie générale est bien développée dans le cas où G est un groupe topologique localement compact (séparé) et les représentations sont fortement continues. La théorie a été largement appliquée en mécanique quantique depuis les années 1920, particulièrement sous l'influence par le livre de 1928 de Hermann Weyl, Gruppentheorie und Quantenmechanik.
Transformation géométriqueUne transformation géométrique est une bijection d'une partie d'un ensemble géométrique dans lui-même. L'étude de la géométrie est en grande partie l'étude de ces transformations. Les transformations géométriques peuvent être classées selon la dimension de l'ensemble géométrique : principalement les transformations planes et les transformations dans l'espace. On peut aussi classer les transformations d'après leurs éléments conservés : Jusqu'à l'avant dernière, chacune de ces classes contient la précédente.
Lasso (statistiques)En statistiques, le lasso est une méthode de contraction des coefficients de la régression développée par Robert Tibshirani dans un article publié en 1996 intitulé Regression shrinkage and selection via the lasso. Le nom est un acronyme anglais : Least Absolute Shrinkage and Selection Operator. Bien que cette méthode fut utilisée à l'origine pour des modèles utilisant l'estimateur usuel des moindres carrés, la pénalisation lasso s'étend facilement à de nombreux modèles statistiques tels que les modèles linéaires généralisés, les modèles à risque proportionnel, et les M-estimateurs.
Diffusion de la matièreLa diffusion de la matière, ou diffusion chimique, désigne la tendance naturelle d'un système à rendre uniforme le potentiel chimique de chacune des espèces chimiques qu'il comporte. La diffusion chimique est un phénomène de transport irréversible qui tend à homogénéiser la composition du milieu. Dans le cas d'un mélange binaire et en l'absence des gradients de température et de pression, la diffusion se fait des régions de plus forte concentration vers les régions de concentration moindre.
Théorème de RadonLe théorème de projection de Radon établit la possibilité de reconstituer une fonction réelle à deux variables (assimilable à une image) à l'aide de la totalité de ses projections selon des droites concourantes. L'application la plus courante de ce théorème est la reconstruction d'images médicales en tomodensitométrie, c'est-à-dire dans les scanneurs à rayon X. Il doit son nom au mathématicien Johann Radon. En pratique, il est impossible de disposer de toutes les projections d'un objet solide, seulement un échantillonnage.