Système de racinesEn mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie des groupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués.
Coxeter elementIn mathematics, the Coxeter number h is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number h of an irreducible root system. A Coxeter element is a product of all simple reflections.
Équation cubiquethumb|right|Une équation cubique admet au plus trois solutions réelles. En mathématiques, une équation cubique est une équation polynomiale de degré 3, de la forme ax + bx + cx + d = 0 avec a non nul, où les coefficients a, b, c et d sont en général supposés réels ou complexes. Les équations cubiques étaient connues des anciens Babyloniens, Grecs, Chinois, Indiens et Égyptiens. On a trouvé des tablettes babyloniennes () avec, en écriture cunéiforme, des tables de calcul de cubes et de racines cubiques.
EllipsoïdeEn mathématiques, et plus précisément en géométrie euclidienne, un ellipsoïde est une surface du second degré de l'espace euclidien à trois dimensions. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de point à l'infini. L'ellipsoïde admet un centre et au moins trois plans de symétrie. L'intersection d'un ellipsoïde avec un plan est une ellipse, un point ou l'ensemble vide.
Construction à la règle et au compasEuclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
TwistronicsTwistronics (from twist and electronics) is the study of how the angle (the twist) between layers of two-dimensional materials can change their electrical properties. Materials such as bilayer graphene have been shown to have vastly different electronic behavior, ranging from non-conductive to superconductive, that depends sensitively on the angle between the layers. The term was first introduced by the research group of Efthimios Kaxiras at Harvard University in their theoretical treatment of graphene superlattices.
Géométrie absolueLa géométrie absolue (parfois appelée géométrie neutre) est une géométrie basée sur le système d'axiomes de la géométrie euclidienne, privé de l'axiome des parallèles ou de sa négation. Elle est formée des résultats qui sont vrais à la fois en géométrie euclidienne et en géométrie hyperbolique, parfois énoncés sous une forme affaiblie par rapport à l'énoncé euclidien traditionnel. La géométrie absolue fut introduite (sous ce nom) par János Bolyai en 1832 ; le terme de géométrie neutre (sous-entendu par rapport à l'axiome des parallèles) lui a été parfois préféré, pour éviter de donner l'impression que toute autre géométrie en découle.
AngleEn géométrie, la notion générale d'angle se décline en plusieurs concepts. Dans son sens ancien, l'angle est une figure plane, portion de plan délimitée par deux demi-droites. C'est ainsi qu'on parle des angles d'un polygone. Cependant, l'usage est maintenant d'employer le terme « secteur angulaire » pour une telle figure. L'angle peut désigner également une portion de l'espace délimitée par deux plans (angle dièdre). La mesure de tels angles porte couramment mais abusivement le nom d'angle, elle aussi.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Tableau périodique des élémentsvignette|400px|Tableau périodique des éléments au . 400px|vignette|Avec davantage de détails par élément. Le tableau périodique des éléments, également appelé tableau ou table de Mendeleïev, classification périodique des éléments ou simplement tableau périodique, représente tous les éléments chimiques, ordonnés par numéro atomique croissant et organisés en fonction de leur configuration électronique, laquelle sous-tend leurs propriétés chimiques.