Quantifications canoniquesEn physique, la quantification canonique est une procédure pour quantifier une théorie classique, tout en essayant de préserver au maximum la structure formelle, comme les symétries, de la théorie classique. Historiquement, ce n'était pas tout à fait la voie de Werner Heisenberg pour obtenir la mécanique quantique, mais Paul Dirac l'a introduite dans sa thèse de doctorat de 1926, la «méthode de l'analogie classique» pour la quantification, et l'a détaillée dans son texte classique.
Quantum vortexIn physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction.
Seconde quantificationLa seconde quantification, aussi appelée quantification canonique, est une méthode de quantification des champs introduite par Dirac en 1927 pour l'électrodynamique quantique. Elle consiste à partir d'un champ classique tel que le champ électromagnétique, à le considérer comme un système physique et à remplacer les grandeurs classiques décrivant l'état du champ par un état quantique et des observables de la physique quantique. On aboutit naturellement à la conclusion que l'énergie du champ est quantifiée, chaque quantum représentant une particule.
Oscillateur harmonique quantiqueL'oscillateur harmonique quantique correspond au traitement par les outils de la mécanique quantique de l'oscillateur harmonique classique. De façon générale, un oscillateur est un système dont l'évolution dans le temps est périodique. Il est dit de plus harmonique si les oscillations effectuées sont sinusoïdales, avec une amplitude et une fréquence qui ne dépendent que des caractéristiques intrinsèques du système et des conditions initiales.
Particule dans une boîteEn physique, la particule dans une boîte (ou puits de potentiel carré) est une représentation simple d'un système relevant de la mécanique quantique. On étudie une particule confinée dans une région finie de l'espace grâce à des murs de potentiel infini aux bords de cette région. La particule n'est soumise à aucune force à l'intérieur de la boîte, mais y est retenue par une force infinie aux bords. C'est une situation similaire à un gaz confiné dans un contenant. Pour simplifier, le cas unidimensionnel sera premièrement traité.
Microscopie électronique en transmissionvignette|upright=1.5|Principe de fonctionnement du microscope électronique en transmission. vignette|Un microscope électronique en transmission (1976). La microscopie électronique en transmission (MET, ou TEM pour l'anglais transmission electron microscopy) est une technique de microscopie où un faisceau d'électrons est « transmis » à travers un échantillon très mince. Les effets d'interaction entre les électrons et l'échantillon donnent naissance à une image, dont la résolution peut atteindre 0,08 nanomètre (voire ).
Quantification (physique)En physique, la quantification est une procédure permettant de construire une théorie quantique d'un champ à partir d'une théorie classique de ce champ. On parle parfois de seconde quantification pour la distinguer du principe de correspondance permettant de construire la mécanique quantique à partir de la mécanique classique, et que la procédure de quantification généralise. Le terme de quantification du champ est également utilisé, par exemple lorsque l'on parle de la « quantification du champ électromagnétique », dans laquelle les photons sont vus comme les quanta du champ.
Quasi-particuleLes quasi-particules, ou quasiparticules, sont des entités conçues comme des particules et facilitant la description des systèmes de particules, particulièrement en physique de la matière condensée. Parmi les plus connues, on distingue les trous d'électrons qui peuvent être vus comme un "manque d'électron", et les phonons, qui décrivent des "paquets de vibration". Les solides sont formés de trois types de particules : les électrons, les protons et les neutrons.
Densité d'états électroniquesEn physique du solide et physique de la matière condensée, la densité d'états électroniques, en anglais Density of States ou DOS, quantifie le nombre d'états électroniques susceptibles d’être occupés, et possédant une énergie donnée dans le matériau considéré. Elle est généralement notée par l'une des lettres g, ρ, D, n ou N. Plus précisément, on définit la densité d'états par le fait que est le nombre d'états électroniques disponibles, avec une énergie comprise entre et , par unité de volume du solide ou par maille élémentaire du cristal étudié.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.