Annulateur (théorie des modules)In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of S. Over an integral domain, a module that has a nonzero annihilator is a torsion module, and a finitely generated torsion module has a nonzero annihilator. The above definition applies also in the case noncommutative rings, where the left annihilator of a left module is a left ideal, and the right-annihilator, of a right module is a right ideal.
Idéal premierEn algèbre commutative, un idéal premier d'un anneau commutatif unitaire est un idéal tel que le quotient de l'anneau par cet idéal est un anneau intègre. Ce concept généralise la notion de nombre premier à des anneaux à la structure moins simple d'accès que l'anneau des entiers relatifs. Ils jouent un rôle particulièrement important en théorie algébrique des nombres. thumb|Richard Dedekind (1831-1916), formalisateur du concept d'idéal.
IdéalEn mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau qui est, de plus, stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.
Isotropic quadratic formIn mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V.
Corps localEn mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local.
Primitive idealIn mathematics, specifically ring theory, a left primitive ideal is the annihilator of a (nonzero) simple left module. A right primitive ideal is defined similarly. Left and right primitive ideals are always two-sided ideals. Primitive ideals are prime. The quotient of a ring by a left primitive ideal is a left primitive ring. For commutative rings the primitive ideals are maximal, and so commutative primitive rings are all fields. The primitive spectrum of a ring is a non-commutative analog of the prime spectrum of a commutative ring.
Corps globalEn mathématiques, un corps global est un corps d'un des types suivants : un corps de nombres, c'est-à-dire une extension finie de Q un corps de fonctions d'une courbe algébrique sur un corps fini, c'est-à-dire une extension finie du corps k(t) des fractions rationnelles à une variable à coefficients dans un corps fini k (de façon équivalente, c'est un corps de type fini et de degré de transcendance 1 sur un corps fini). Emil Artin et George Whaples ont donné une caractérisation axiomatique de ces corps via la théorie des valuations.
Forme quadratique binaireEn mathématiques, une forme quadratique binaire est une forme quadratique — c'est-à-dire un polynôme homogène de degré 2 — en deux variables : Les propriétés d'une telle forme dépendent de façon essentielle de la nature des coefficients a, b, c, qui peuvent être par exemple des nombres réels ou rationnels ou, ce qui rend l'étude plus délicate, entiers. Fermat considérait déjà des formes quadratiques binaires entières, en particulier pour son théorème des deux carrés.
Anneau localEn mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.
Nil idealIn mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nil elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture.