SymétrieLa symétrie est une propriété d'un système : c'est lorsque deux parties sont semblables. L'exemple le plus connu est la symétrie en géométrie. De manière générale, un système est symétrique quand on peut permuter ses éléments en laissant sa forme inchangée. Le concept d'automorphisme permet de préciser cette définition. Un papillon, par exemple, est symétrique parce qu'on peut permuter tous les points de la moitié gauche de son corps avec tous les points de la moitié droite sans que son apparence soit modifiée.
Symétrie (transformation géométrique)Une symétrie géométrique est une transformation géométrique involutive qui conserve le parallélisme. Parmi les symétries courantes, on peut citer la réflexion et la symétrie centrale. Une symétrie géométrique est un cas particulier de symétrie. Il existe plusieurs sortes de symétries dans le plan ou dans l’espace. Remarque : Le terme de symétrie possède aussi un autre sens en mathématiques. Dans l'expression groupe de symétrie, une symétrie désigne une isométrie quelconque.
Groupe de symétrieLe groupe de symétrie, ou groupe des isométries, d'un objet (, signal, etc.) est le groupe de toutes les isométries sous lesquelles cet objet est globalement invariant, l'opération de ce groupe étant la composition. C'est un sous-groupe du groupe euclidien, qui est le groupe des isométries de l'espace affine euclidien ambiant. (Si cela n'est pas indiqué, nous considérons ici les groupes de symétrie en géométrie euclidienne, mais le concept peut aussi être étudié dans des contextes plus larges, voir ci-dessous.
Théorie des groupesvignette|Le Rubik's cube illustre la notion de groupes de permutations. Voir groupe du Rubik's Cube. La théorie des groupes est en mathématique, plus précisément en algèbre générale, la discipline qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie. La théorie des groupes est étroitement liée à la théorie des représentations.
Symétrie (physique)En physique la notion de symétrie, qui est intimement associée à la notion d'invariance, renvoie à la possibilité de considérer un même système physique selon plusieurs points de vue distincts en termes de description mais équivalents quant aux prédictions effectuées sur son évolution. Une théorie physique possède alors une symétrie S, si toute équation dans cette théorie décrit tout aussi correctement une particule ρ qu'une particule -ρ 'symétrique' de ρ.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Réflexion (mathématiques)En mathématiques, une réflexion ou symétrie axiale du plan euclidien est une symétrie orthogonale par rapport à une droite (droite vectorielle s'il s'agit d'un plan vectoriel euclidien). Elle constitue alors une symétrie axiale orthogonale. Plus généralement, dans un espace euclidien quelconque, une réflexion est une symétrie orthogonale par rapport à un hyperplan, c'est-à-dire à un sous-espace de codimension 1. En dimension 3, il s'agit donc d'une symétrie orthogonale par rapport à un plan.
Fonction d'ondethumb|300px|right|Illustration de la notion de fonction d'onde dans le cas d'un oscillateur harmonique. Le comportement en mécanique classique est représenté sur les images A et B et celui en mécanique quantique sur les figures C à H. Les parties réelles et imaginaires des fonctions d'onde sont représentées respectivement en bleu et en rouge. Les images C à F correspondent à des états stationnaires de l'énergie, tandis que les figures G et H correspondent à des états non stationnaires.
Brisure spontanée de symétrieEn physique, le terme brisure spontanée de symétrie (BSS) renvoie au fait que, sous certaines conditions, certaines propriétés de la matière ne semblent pas respecter les équations décrivant le mouvement des particules (on dit qu'elles n'ont pas les mêmes symétries). Cette incohérence n'est qu'apparente et signifie simplement que les équations présentent une approximation à améliorer. Cette notion joue un rôle important en physique des particules et en physique de la matière condensée.
Point groups in three dimensionsIn geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.