Théorèmes d'isomorphismeEn mathématiques, les trois théorèmes d'isomorphisme fournissent l'existence d'isomorphismes dans le cadre de la théorie des groupes. Ces trois théorèmes d'isomorphisme sont généralisables à d'autres structures que les groupes. Voir notamment « Anneau quotient », « Algèbre universelle » et « Groupe à opérateurs ». Le premier théorème d'isomorphisme affirme qu'étant donné un morphisme de groupes , on peut rendre injectif en quotientant par son noyau Ker f, qui est un sous-groupe normal de G.
Glossary of field theoryField theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) A field is a commutative ring (F,+,*) in which 0≠1 and every nonzero element has a multiplicative inverse. In a field we thus can perform the operations addition, subtraction, multiplication, and division. The non-zero elements of a field F form an abelian group under multiplication; this group is typically denoted by F×; The ring of polynomials in the variable x with coefficients in F is denoted by F[x].
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Anneau simpleEn mathématiques, un anneau simple est une des structures algébriques utilisées en algèbre générale. Un anneau est dit simple s'il est non nul et n'admet pas d'autres idéaux bilatères que {0} et lui-même. Un anneau commutatif est simple si et seulement si c'est un corps commutatif. Plus généralement, un corps (non nécessairement commutatif) est un anneau simple, et l'anneau des matrices carrées d'ordre n à coefficients dans un corps est simple.
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Algèbre de VirasoroL′algèbre de Virasoro est une algèbre de Lie complexe de dimension infinie qui joue un rôle essentiel dans certaines théories physiques, notamment en théorie des cordes, et d'une manière générale dans les théories conformes des champs, ainsi qu'en mathématiques dans l'étude du groupe Monstre (au travers du module moonshine) et des algèbres vertex. Elle tient son nom du physicien argentin qui les a introduit en théorie des cordes en 1970.
Caractéristique d'un anneauEn algèbre, la caractéristique d'un anneau (unitaire) A est par définition l'ordre pour la loi additive de l'élément neutre de la loi multiplicative si cet ordre est fini ; si cet ordre est infini, la caractéristique de l'anneau est par définition zéro. On note, pour un anneau unitaire (A, +, ×), 0A l'élément neutre de « + » et 1A celui de « × ». La caractéristique d'un anneau A est donc le plus petit entier n > 0 tel que si un tel entier existe. Dans le cas contraire (autrement dit si 1A est d'ordre infini), la caractéristique est nulle.
Affine Lie algebraIn mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras.
Ernst WittNOTOC Ernst Witt ( à Als - à Hambourg) est un mathématicien allemand. Son père étant missionnaire, il part en Chine pour ne revenir en Europe qu'en 1920. Il étudie à l'université de Fribourg-en-Brisgau. Il s'inscrit aux SA en 1933. En 1936 il obtient, encadré par Emmy Noether à l'université de Göttingen, son doctorat dont le sujet porte sur le théorème de Riemann-Roch. Il enseigne alors jusqu'en 1937 à l'université de Hambourg. Les travaux de Witt portent surtout sur l'algèbre et les formes quadratiques.
Forme sesquilinéaireEn algèbre, une forme sesquilinéaire sur un espace vectoriel complexe E est une application de E × E dans C, linéaire selon l'une des variables et semi-linéaire par rapport à l'autre variable. Elle possède donc une propriété de « un-et-demi » linéarité (cf. préfixe sesqui, qui signifie "dans un rapport de un et demi"). C'est l'équivalent complexe des formes bilinéaires réelles. Les formes sesquilinéaires les plus étudiées sont les formes hermitiennes qui correspondent aux formes bilinéaires (réelles) symétriques.