Optimisation linéaire en nombres entiersL'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.
Réseau de flotEn théorie des graphes, un réseau de flot (aussi appelé réseau de transport) est un graphe orienté où chaque arête possède une capacité et peut recevoir un flot (ou flux). Le cumul des flots sur une arête ne peut pas excéder sa capacité. Un graphe orienté est souvent appelé réseau en recherche opérationnelle. Les sommets sont alors appelés des nœuds et les arêtes des arcs. Pour qu'un flot soit valide, il faut que la somme des flots atteignant un nœud soit égale à la somme des flots quittant ce nœud, sauf s'il s'agit d'une source (qui n'a pas de flot entrant), ou d'un puits (qui n'a pas de flot sortant).
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Ressource hydriqueLa ressource hydrique, ou ressource en eau, comprend, au sens large, toutes les eaux accessibles comme ressources, c'est-à-dire utiles et disponibles pour l'être humain, les végétaux qu'il cultive, le bétail qu'il élève et les écosystèmes, à différents points du cycle de l'eau. Cette ressource est limitée en quantité et en qualité (surtout en zone sèche). Elle est indispensable à la vie et à la plupart des activités humaines, telles que l'agriculture, l'industrie et aux usages domestiques (alimentation en eau potable).
Contrôle en boucle ferméeEn régulation, un contrôle en boucle fermée est une forme de contrôle d'un système qui intègre la réaction de ce système (appelée rétroaction ou en anglais, ). Un exemple est un régulateur de vitesse présent sur les automobiles. L'opposé du contrôle en boucle fermée est le contrôle en boucle ouverte, qui ne prend pas en compte de rétroaction. Voici un exemple général présentant la fonction de transfert d'un système en boucle fermée. Asservissement (automatique) Régulateur PID Critère de Nyquist Catégorie:A
Circuit en boucle ouverteEn régulation, un système en boucle ouverte ou contrôle ouvert est une forme de contrôle d'un système qui ne prend pas en compte la réponse de ce système (appelée rétroaction, en anglais : feedback). Ce contrôle, simple en principe, est à utiliser avec précaution si le système est naturellement instable. Pour le mettre en place il faut au préalable avoir parfaitement modélisé le système, que la commande soit parfaitement adaptée et qu'il n'y ait aucune perturbation.
Control loopA control loop is the fundamental building block of control systems in general industrial control systems and industrial control systems in particular. It consists of the process sensor, the controller function, and the final control element (FCE) which controls the process necessary to automatically adjust the value of a measured process variable (PV) to equal the value of a desired set-point (SP). There are two common classes of control loop: open loop and closed loop.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Système numérique de contrôle-commandevignette|Deux racks de CS3000, un SNCC de Yokogawa. De droite à gauche, dans le rack supérieur : une alimentation, une CPU, une carte bus pour communiquer avec l'autre rack, des cartes d'entrées-sorties ; dans le rack inférieur : idem sauf la CPU. On peut remarquer que la CPU est connectée à deux câbles Ethernet redondants pour communiquer avec d'autres CPU et des PC de supervision. Un système numérique de contrôle-commande (SNCC, ou DCS pour distributed control system en anglais) est un système de contrôle d'un procédé industriel doté d'une interface homme-machine pour la supervision et d'un réseau de communication numérique.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .