Économies d'énergieLes économies d'énergie sont les gains obtenus en réduisant la consommation d'énergie ou les pertes sur l'énergie produite. Les économies d'énergie sont devenues un objectif important des pays fortement consommateurs d'énergie vers la fin du , notamment après le choc pétrolier de 1973 puis à partir des années 1990, afin de répondre à plusieurs inquiétudes : la crainte d'un épuisement des ressources naturelles, particulièrement des combustibles fossiles ; le réchauffement climatique résultant des émissions de gaz à effet de serre ; les problèmes politiques et de sécurité d'approvisionnement dus à l'inégale répartition des ressources sur la planète ; le coût de l'énergie que la combinaison de ces phénomènes peut faire augmenter.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
ÉlectrodynamiqueL’électrodynamique est la discipline physique qui étudie et traite des actions dynamiques entre les courants électriques. On distingue l’électrodynamique classique et l’électrodynamique quantique. Tout phénomène d'électrodynamique classique est décrit par les équations de Maxwell. En 1820, André-Marie Ampère, après avoir été informé de l'expérience de Hans Christian Ørsted mettant en évidence l’interaction entre un courant électrique et un aimant, formalise mathématiquement, pour la première fois, les forces d'interaction entre aimants et courants et les forces mutuelles entre courants.
Tour de corpsEn mathématiques, une tour de corps est une suite d'extensions de corps Le nom de tour vient du fait qu'une telle suite est souvent écrite sous la forme Une tour de corps peut aussi bien être finie qu'infinie. est une tour de corps finie composée des corps de nombres rationnels, réels puis complexes. Soit la suite définie par F0 = le corps Q des rationnels et (i.e. Fn+1 est obtenu à partir de Fn en ajoutant la racine 2n-ième de 2). Cette tour de corps est infinie.
Énergie (physique)En physique, l'énergie est une grandeur qui mesure la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur. Dans le Système international d'unités (SI), l'énergie s'exprime en joules et est de dimension . Le mot français vient du latin vulgaire energia, lui-même issu du grec ancien / enérgeia. Ce terme grec originel signifie « force en action », par opposition à / dýnamis signifiant « force en puissance » ; Aristote a utilisé ce terme , pour désigner la réalité effective en opposition à la réalité possible.
Conservation de l'énergieLa conservation de l'énergie est un principe physique, selon lequel l'énergie totale d'un système isolé est invariante au cours du temps. Ce principe, largement vérifié expérimentalement, est de première importance en physique, et impose que pour tout phénomène physique l'énergie totale initiale du système isolé soit égale à l'énergie totale finale, donc que de l'énergie passe d'une forme à une autre durant le déroulement du phénomène, sans création ni disparition d'énergie.
Conservation de la masseLa conservation de la masse (ou de Lavoisier) est une loi fondamentale de la chimie et de la physique. Elle indique non seulement qu'au cours de toute expérience, y compris si elle implique une transformation chimique, la masse se conserve, mais aussi que le nombre d'éléments de chaque espèce chimique se conserve (cette loi ne s'applique pas à l'échelle nucléaire : voir défaut de masse). Comme toute loi de conservation elle s'exprime par une équation de conservation.
Extension cyclotomiqueEn théorie algébrique des nombres, on appelle extension cyclotomique du corps Q des nombres rationnels tout corps de rupture d'un polynôme cyclotomique, c'est-à-dire tout corps de la forme Q(ζ) où ζ est une racine de l'unité. Ces corps jouent un rôle crucial, d'une part dans la compréhension de certaines équations diophantiennes : par exemple, l'arithmétique (groupe des classes, notamment) de leur anneau des entiers permet de montrer le dernier théorème de Fermat dans de nombreux cas (voir nombre premier régulier) ; mais aussi, dans la compréhension des extensions algébriques de Q, ce qui peut être considéré comme une version abstraite du problème précédent : le théorème de Kronecker-Weber, par exemple, assure que toute extension abélienne est contenue dans une extension cyclotomique.
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Spline cubique d'HermiteOn appelle spline cubique d'Hermite une spline de degré trois, nommée ainsi en hommage à Charles Hermite, permettant de construire un polynôme de degré minimal (le polynôme doit avoir au minimum quatre degrés de liberté et être donc de degré 3) interpolant une fonction en deux points avec ses tangentes. Chaque polynôme se trouve sous la forme suivante : thumb|Les quatre polynômes de base avec ce qui donne le polynôme suivant : Sous cette écriture, il est possible de voir que le polynôme p vérifie : La courbe est déterminée par la position des points et des tangentes.