Coordonnées elliptiquesdroite|vignette|352x352px| Système de coordonnées elliptiques En géométrie, le système de coordonnées elliptiques est un système de coordonnées orthogonales à deux dimensions, dans lequel les lignes de coordonnées sont des ellipses et des hyperboles confocales. Les deux foyers et sont généralement considérés comme fixés à et , respectivement, sur l'axe des du système de coordonnées cartésiennes. La notation la plus courante des coordonnées elliptiques est : où est un nombre réel positif et Sur le plan complexe, une relation équivalente est : Ces définitions correspondent aux ellipses et aux hyperboles.
Confocal conic sectionsIn geometry, two conic sections are called confocal if they have the same foci. Because ellipses and hyperbolas have two foci, there are confocal ellipses, confocal hyperbolas and confocal mixtures of ellipses and hyperbolas. In the mixture of confocal ellipses and hyperbolas, any ellipse intersects any hyperbola orthogonally (at right angles). Parabolas have only one focus, so, by convention, confocal parabolas have the same focus and the same axis of symmetry.
Courbe algébriqueEn mathématiques, et plus précisément en géométrie algébrique, une courbe algébrique est une variété algébrique (ou un schéma de type fini) sur un corps, dont les composantes irréductibles sont de dimension 1. Cette définition est la généralisation moderne de celle des courbes algébriques classiques, telles que les coniques, définies, dans le cas des courbes planes, comme l'ensemble des points solutions d'une équation polynomiale. Sous sa forme la plus générale, une courbe algébrique sur un corps est une variété algébrique de dimension 1 sur , séparée pour éviter des pathologies.
Area of a circleIn geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter pi represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159. One method of deriving this formula, which originated with Archimedes, involves viewing the circle as the limit of a sequence of regular polygons with an increasing number of sides.
Orientation de courbeEn mathématiques, une courbe orientée positivement est une courbe fermée simple plane (c'est-à-dire une courbe dans le plan dont le point de départ est également le point final et qui n'a pas d'autres intersections propres) de telle sorte que lorsque l'on se déplace dessus, on a toujours la courbe intérieur à gauche (et par conséquent, la courbe extérieure à droite). Si dans la définition ci-dessus on échange gauche et droite, on obtient une courbe orientée négativement .
Serpent corailInfobox Biohomonymie | nom = Serpent corail | autre = | image = coral snake.jpg | légende = serpent corail du genre Micrurus | alt = | upright = | taxons = plusieurs genres de la famille des Elapidae Micrurus Micruroides Sinomicrurus Calliophis Hemibungarus Aspidelaps lubricus | groupe1 = | liste1 = Le terme serpents corail''' s'applique à un groupe étendu de serpents de la famille des Elapidae. Ils peuvent être divisés en deux groupes distincts, le groupe du Nouveau Monde et le groupe de l'Ancien Monde.
ParaboloïdeEn mathématiques, un paraboloïde est une surface du second degré de l'espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de ne pas posséder de centre de symétrie. Certaines sections d'un paraboloïde avec un plan sont des paraboles. D'autres sont, selon le cas, des ellipses ou des hyperboles. On distingue donc les paraboloïdes elliptiques et les paraboloïdes hyperboliques. Cette surface peut s'obtenir en faisant glisser une parabole sur une autre parabole tournant sa concavité dans la même direction.
Théorème de JordanEn mathématiques, le théorème de Jordan est un théorème de topologie plane. Il est célèbre par le caractère apparemment intuitif de son énoncé et la difficulté de sa démonstration. précise M. Dostal à son sujet. Si, à l'aide d'un crayon, on dessine une ligne continue (on ne lève pas le crayon) qui ne se croise pas et qui termine là où elle commence, la zone de la feuille non dessinée se décompose en deux parties, l'intérieur de la figure, qui est borné, et l'extérieur, qui ne le serait pas si la feuille ne l'était pas.
Approximation diophantiennevignette|Meilleurs approximations rationnelles pour les nombres irrationnels Π (vert), e (bleu), φ (rose), √3/2 (gris), 1/√2 (rouge) et 1/√3 (orange) tracées sous forme de pentes y/x avec des erreurs par rapport à leurs vraies valeurs (noirs) par CMG Lee. En théorie des nombres, l'approximation diophantienne, qui porte le nom de Diophante d'Alexandrie, traite de l'approximation des nombres réels par des nombres rationnels.
Hyperbole (mathématiques)thumb|Hyperbole obtenue comme intersection d'un cône et d'un plan parallèle à l'axe du cône.Si l'on incline légèrement le plan, l'intersection sera encore une hyperbole tant que l'angle d'inclinaison reste inférieur à l'angle que fait une génératrice avec l'axe du cône. En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante.