Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Variable aléatoire à densitéEn théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle, scalaire ou vectorielle, pour laquelle la probabilité d'appartenance à un domaine se calcule à l'aide d'une intégrale sur ce domaine. La fonction à intégrer est alors appelée « fonction de densité » ou « densité de probabilité », égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d'intégrale 1.
Formule de Boltzmannthumb|Sur la tombe de Ludwig Boltzmann En physique statistique, la formule de Boltzmann (1877) définit l'entropie microcanonique d'un système physique à l'équilibre macroscopique, libre d'évoluer à l'échelle microscopique entre micro-états différents. Elle s'écrit : où est la constante de Boltzmann qui est égale à . est appelé le nombre de complexions du système ou nombre de configurations.
Système immunitairevignette|Un lymphocyte, principale composante du système immunitaire adaptatif des vertébrés. Le système immunitaire d'un organisme est un système biologique complexe constitué d'un ensemble coordonné d'éléments de reconnaissance et de défense qui discrimine le soi du non-soi. Ce qui est reconnu comme non-soi est détruit. Il protège l'organisme des agents pathogènes : virus, bactéries, parasites, certaines particules ou molécules « étrangères » (dont certains poisons), mais est responsable du phénomène de rejet de greffe.
Système immunitaire adaptatifvignette|Schéma simplifié de l'homéostasie et de la réponse immunitaire au niveau de la barrière intestinale. Le système immunitaire adaptatif comprend les lymphocytes T, qui contribuent à l'immunité à médiation cellulaire, et les lymphocytes B, qui sont responsables de l'immunité à médiation humorale. Ces deux populations cellulaires ont des propriétés et des fonctions distinctes des cellules du système immunitaire inné.
Processus adiabatiquevignette|250px|Récipient aux parois adiabatiques : le vase de Dewar. En thermodynamique, un processus adiabatique est une transformation effectuée sans qu'aucun transfert thermique n'intervienne entre le système étudié et son environnement, c'est-à-dire sans échange de chaleur entre les deux milieux. Le mot « adiabatique » a été construit à partir du grec (« infranchissable »), dérivé de , « traverser, franchir ». Un matériau adiabatique est imperméable à la chaleur.
Constante de BoltzmannLa constante de Boltzmann k (ou k) a été introduite par Ludwig Boltzmann dans sa définition de l'entropie de 1877. Le système étant à l'équilibre macroscopique, mais libre d'évoluer à l'échelle microscopique entre micro-états différents, son entropie S est donnée par : où la constante k retenue par le CODATA vaut (valeur exacte). La constante des gaz parfaits est liée à la constante de Boltzmann par la relation : (avec (valeur exacte) le nombre d'Avogadro, nombre de particules dans une mole). D'où :.
Fonction de masse (probabilités)En théorie des probabilités, la fonction de masse est la fonction qui donne la probabilité de chaque issue ( résultat élémentaire) d'une expérience aléatoire. C'est souvent ainsi que l'on définit une loi de probabilité discrète. Elle se distingue de la fonction de densité, de la densité de probabilité, en ceci que les densités de probabilité ne sont définies que pour des variables aléatoires absolument continues, et que ce sont leurs intégrales sur des domaines qui ont valeurs de probabilités (et non leurs valeurs en des points).