Espace pseudo-euclidienEn mathématiques, et plus particulièrement en géométrie, un espace pseudo-euclidien est une extension du concept d'espace euclidien, c'est-à-dire que c'est un espace vectoriel muni d'une forme bilinéaire (qui définirait la métrique dans le cas d'un espace euclidien), mais cette forme n'est pas définie positive, ni même positive. L'espace de Minkowski est un exemple d'espace pseudo-euclidien. Dans les espaces euclidiens, les notions de métrique et d'orthogonalité sont construites par l'adjonction d'un produit scalaire à un espace vectoriel réel de dimension finie.
Differential algebraIn mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Sursaut gammavignette|Sursaut gamma (vue d'artiste). Un sursaut gamma ou sursaut de rayons gamma (SRG ; en anglais gamma-ray bursts, abrégé en GRB ; quelquefois traduit par « explosion de rayons gamma ») est en astronomie une bouffée de photons gamma qui apparaît de manière aléatoire dans le ciel. Il est caractérisé par sa brièveté (de quelques secondes à quelques minutes) et par la forme particulière de la courbe de lumière. Il est prolongé par des émissions rémanentes, à des longueurs d'onde plus grandes, qui peuvent durer jusqu'à plusieurs mois en s'affaiblissant progressivement.
Opérateur elliptiqueEn mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Opérateur pseudo-différentielEn analyse mathématique, un opérateur pseudo-différentiel est une extension du concept familier d'opérateur différentiel, permettant notamment l'inclusion d'ordres de dérivation non entiers. Ces opérateurs pseudo-différentiels sont abondamment utilisés dans la théorie des équations aux dérivées partielles et en théorie quantique des champs. On reprend ci-dessous les notations introduites dans l'article opérateur différentiel. Rappelons qu'un opérateur différentiel linéaire d'ordre s'écrit : où les , appelées coefficients de l'opérateur , sont des fonctions des variables d'espace .
Espace de Schwartzvignette|Une fonction gaussienne bidimensionnelle est un exemple de fonction à décroissance rapide. En analyse mathématique, l'espace de Schwartz est l'espace des fonctions déclinantes (c'est-à-dire des fonctions indéfiniment dérivables à décroissance rapide, ainsi que leurs dérivées de tous ordres). Le dual de cet espace est l'espace des distributions tempérées. Les espaces et jouent un rôle essentiel dans la théorie de la transformée de Fourier.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.