Polymèrevignette|Fibres de polyester observées au Microscopie électronique à balayage. vignette|La fabrication d'une éolienne fait intervenir le moulage de composites résines/renforts. Les polymères (étymologie : du grec polus, plusieurs, et meros, partie) constituent une classe de matériaux. D'un point de vue chimique, un polymère est une substance composée de macromolécules et issue de molécules de faible masse moléculaire. Un polymère est caractérisé par le degré de polymérisation.
Module d'élasticitéUn module d'élasticité (ou module élastique ou module de conservation) est une grandeur intrinsèque d'un matériau, définie par le rapport d'une contrainte à la déformation élastique provoquée par cette contrainte. Les déformations étant sans dimension, les modules d'élasticité sont homogènes à une pression et leur unité SI est donc le pascal ; en pratique on utilise plutôt un multiple, le ou le . Le comportement élastique d'un matériau homogène isotrope et linéaire est caractérisé par deux modules (ou constantes) d'élasticité indépendants.
Deformation (engineering)In engineering, deformation refers to the change in size or shape of an object. Displacements are the absolute change in position of a point on the object. Deflection is the relative change in external displacements on an object. Strain is the relative internal change in shape of an infinitesimally small cube of material and can be expressed as a non-dimensional change in length or angle of distortion of the cube. Strains are related to the forces acting on the cube, which are known as stress, by a stress-strain curve.
Déformation d'un matériauLa déformation des matériaux est une science qui caractérise la manière dont réagit un matériau donné quand il est soumis à des sollicitations mécaniques. Cette notion est primordiale dans la conception (aptitude de la pièce à réaliser sa fonction), la fabrication (mise en forme de la pièce), et le dimensionnement mécanique (calcul de la marge de sécurité d'un dispositif pour éviter une rupture). La capacité d'une pièce à se déformer et à résister aux efforts dépend de trois paramètres : la forme de la pièce ; la nature du matériau ; des processus de fabrication : traitement thermique , traitement de surface, etc.
Fibré tangentEn mathématiques, et plus précisément en géométrie différentielle, le fibré tangent TM associé à une variété différentielle M est la somme disjointe de tous les espaces tangents en tous les points de la variété, soit : où est l'espace tangent de M en x. Un élément de TM est donc un couple (x, v) constitué d'un point x de M et d'un vecteur v tangent à M en x. Le fibré tangent peut être muni d'une topologie découlant naturellement de celle de M.
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.
Énergie potentielle élastiqueEn physique, l’énergie potentielle élastique est l'énergie potentielle emmagasinée dans un corps à caractère élastique lorsque ce dernier est compressé ou étiré par rapport à sa position naturelle. Lorsque la force comprimant ou étirant le ressort cesse, le corps tend naturellement à retourner à sa position naturelle et transforme ainsi son énergie potentielle en énergie cinétique. Le caractère élastique d'un objet est remarquable par la capacité de celui-ci à rebondir ou encore à reprendre sa forme après déformation.
Exact solutions in general relativityIn general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.
Fibré vectorielEn topologie différentielle, un fibré vectoriel est une construction géométrique ayant une parenté avec le produit cartésien, mais apportant une structure globale plus riche. Elle fait intervenir un espace topologique appelé base et un espace vectoriel modèle appelé fibre modèle. À chaque point de la base est associée une fibre copie de la fibre modèle, l'ensemble formant un nouvel espace topologique : l'espace total du fibré. Celui-ci admet localement la structure d'un produit cartésien de la base par la fibre modèle, mais peut avoir une topologie globale plus compliquée.
Chirurgie (topologie)En mathématiques, et particulièrement en topologie géométrique, la chirurgie est une technique, introduite en 1961 par John Milnor, permettant de construire une variété à partir d'une autre de manière « contrôlée ». On parle de chirurgie parce que cela consiste à « couper » une partie de la première variété et à la remplacer par une partie d'une autre variété, en identifiant les frontières ; ces transformations sont étroitement liées à la notion de décomposition en anses.