Method of quantum characteristicsQuantum characteristics are phase-space trajectories that arise in the phase space formulation of quantum mechanics through the Wigner transform of Heisenberg operators of canonical coordinates and momenta. These trajectories obey the Hamilton equations in quantum form and play the role of characteristics in terms of which time-dependent Weyl's symbols of quantum operators can be expressed. In the classical limit, quantum characteristics reduce to classical trajectories.
Équilibre statique (mécanique)En physique, un équilibre statique est un mouvement nul. Dans le cas d’un système matériel quelconque, un mouvement nul se traduit par un champ de vecteurs vitesses nul. Dans le cas d’un solide indéformable, ce mouvement particulier est caractérisé par un torseur cinématique nul Pour un système de plusieurs solides, il faut écrire les conditions précédentes pour chacun des solides. Ceci est une conséquence du « principe fondamental de la statique » qui stipule que « la somme et le moment de toutes les forces qui s'exercent sur lui est nulle.
Lie algebra extensionIn the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
Représentation d'algèbre de LieEn mathématiques, une représentation d'une algèbre de Lie est une façon d'écrire cette algèbre comme une algèbre de matrices, ou plus généralement d'endomorphismes d'un espace vectoriel, avec le crochet de Lie donné par le commutateur. Algèbre de Lie Soit K un corps commutatif de caractéristique différente de 2. Une algèbre de Lie sur K est un espace vectoriel muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Tout espace vectoriel peut être muni d'une structure d'algèbre de Lie, en posant .
Équilibre généralL'équilibre général est un concept d'économie qui désigne la possibilité pour les marchés d'atteindre l'équilibre simultanément par le libre jeu de l'offre et de la demande. L'équilibre général se distingue de l'équilibre simple (ou partiel) en ce qu'il s'agit d'un équilibre atteint sur l'intégralité des marchés. Issu de la microéconomie, la théorie de l'équilibre général a été développée par Léon Walras dans son ouvrage de , Éléments d'économie politique pure.
Équilibre économiqueEn économie, le concept d'équilibre économique sur un ou plusieurs marchés désigne un vecteur de variables, généralement des prix qui égalisent l'offre et la demande sur l'ensemble des marchés considérés. Cette désignation d'ensemble recouvre en fait des concepts d'équilibre très différents, qui présentent des propriétés différentes et appartiennent à des cadres d'analyse parfois éloignés. L'équilibre économique n'est jamais l'équilibre comptable. L'équilibre partiel constitue le concept d'équilibre économique le plus fréquent dans la recherche économique.
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
Groupe de LorentzLe groupe de Lorentz est le groupe mathématique constitué par l'ensemble des transformations de Lorentz de l'espace de Minkowski. Les formules mathématiques : des lois de la cinématique de la relativité restreinte ; des équations de champ de Maxwell dans la théorie de électromagnétisme ; de l'équation de Dirac dans la théorie de l'électron sont toutes invariantes sous les transformations de Lorentz. En conséquence, le groupe de Lorentz exprimerait la symétrie fondamentale de plusieurs lois de la nature.
Géométrie conformeEn mathématiques, la géométrie conforme est l'étude de l'ensemble des transformations préservant l'angle (conformes) sur un espace. Dans un espace réel de dimension 2, la géométrie conforme est précisément la géométrie des surfaces de Riemann. Dans des espaces de dimension supérieure à 2, la géométrie conforme peut se référer soit à l'étude des transformations conformes de ce qu'on appelle les "espaces plats" (tels que les espaces euclidiens ou les sphères), soit à l'étude des variétés conformes qui sont des variétés riemanniennes ou pseudo-riemanniennes.
Système intégrableEn mécanique hamiltonienne, un système intégrable au sens de Liouville est un système qui possède un nombre suffisant de indépendantes. Lorsque le mouvement est borné, la dynamique est alors périodique ou quasi périodique. Soit un système à N degrés de liberté qui est décrit à l'instant par : les N coordonnées généralisées les N moments conjugués . À chaque instant, les 2N coordonnées définissent un point dans l'espace des phases Γ = R2N. L'évolution dynamique du système sous le flot hamiltonien se traduit par une courbe continue appelée orbite dans cet espace des phases.