E8 (mathématiques)vignette|Le polytope de Gosset : les 240 vecteurs du système de racines En mathématiques, est le plus grand groupe de Lie complexe de type exceptionnel. Son algèbre de Lie est notée . E est de rang 8 et de dimension 248. Il est simplement connexe et son centre est trivial. La structure E a été découverte en 1887 par le mathématicien norvégien Sophus Lie pour étudier la symétrie et jusqu’ici personne ne pensait que cet objet mathématique pourrait être compris, considère , responsable de l’équipe qui réunit 18 mathématiciens et programmeurs dans le monde, dont Fokko du Cloux et .
Tore maximalEn mathématiques, un tore maximal d'un groupe de Lie G est un sous-groupe de Lie commutatif, connexe et compact de G qui soit maximal pour ces propriétés. Les tores maximaux de G sont uniques à conjugaison près. De manière équivalente, c'est un de G, isomorphe à un tore, et maximal pour cette propriété. Le quotient du normalisateur N(T) d'un tore T par T est le groupe de Weyl associé. Tout groupe de Lie commutatif connexe est isomorphe à un quotient de Rn par un sous-réseau, donc à un tore Tn.
Groupe réductifEn mathématiques, un groupe réductif est un groupe algébrique G sur un corps algébriquement clos tel que le radical unipotent de G (c'est-à-dire le sous-groupe des éléments unipotents de ) soit trivial. Tout est réductif, de même que tout tore algébrique et tout groupe général linéaire. Plus généralement, sur un corps k non nécessairement algébriquement clos, un groupe réductif est un groupe algébrique affine lisse G tel que le radical unipotent de G sur la clôture algébrique de k soit trivial.
Système de racinesEn mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie des groupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués.
Cartan matrixIn mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. Amusingly, the Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan. A (symmetrizable) generalized Cartan matrix is a square matrix with integral entries such that For diagonal entries, . For non-diagonal entries, . if and only if can be written as , where is a diagonal matrix, and is a symmetric matrix.
Mouvement de rotationLa rotation ou mouvement de rotation est l'un des deux mouvements simples fondamentaux des solides, avec le mouvement rectiligne. En génie mécanique, il correspond au mouvement d'une pièce en liaison pivot par rapport à une autre. La notion de mouvement circulaire est une notion de cinématique du point : on décrit la position d'un point dans le plan. La rotation est une notion de cinématique du solide : on décrit l'orientation d'un solide dans l'espace. L'étude du mouvement de rotation est la base de la méthode du centre instantané de rotation (CIR).
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Transformée de Wigner-WeylLa transformée de Wigner – Weyl (ou transformée de Weyl – Wigner) établit une correspondance univoque entre deux formulations de la mécanique quantique : théorie abstraite de l'infiniment petit qui s'appuie sur des formalismes et des outils mathématiques divers, mais qui rendent compte des mêmes résultats et des mêmes propriétés dans leurs domaines communs d'application ; l'exemple historique bien établi est celui de la mécanique des matrices d'Heisenberg et celle décrite par l'équation de Schrödinger, dont
Équilibre de Nashvignette|Le dilemme du prisonnier : chacun des deux joueurs dispose de deux stratégies : D pour dénoncer, C pour ne pas dénoncer. La matrice présente le gain des joueurs. Si les deux joueurs choisissent D (se dénoncent), aucun ne regrette son choix, car s'il avait choisi C, alors que l'autre a opté pour D, sa « tristesse » aurait augmenté. C'est un équilibre de Nash — il y a « non-regret » de son choix par chacun, au vu du choix de l'autre.
Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).