Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Analyse fractalethumb|Ramification fractale d'un arbre L'analyse fractale est la modélisation de données dont la fractalité est la propriété inhérente. La notion-clé est celle de fractal qui remonte à Benoît Mandelbrot qui l'avait introduite comme description mathématique des objets râpeux. L'analyse fractale s'applique aux systèmes physiques qui se distinguent par une similarité de comportements au travers d'une multitude d'échelles ou, dans des cas les plus prononcés, par l'autosimilarité où cette similarité est conservée au travers d'une infinitude d'échelles.
Fractal flameFractal flames are a member of the iterated function system class of fractals created by Scott Draves in 1992. Draves' open-source code was later ported into Adobe After Effects graphics software and translated into the Apophysis fractal flame editor. Fractal flames differ from ordinary iterated function systems in three ways: Nonlinear functions are iterated in addition to affine transforms. Log-density display instead of linear or binary (a form of tone mapping) Color by structure (i.e.
Benoît MandelbrotBenoît Mandelbrot, né le à Varsovie (Pologne) et mort le à Cambridge (États-Unis), est un mathématicien polono-franco-américain. Il est le découvreur des fractales, nouvelle classe d'objets mathématiques, dont fait partie l'ensemble de Mandelbrot. Il a également travaillé sur des applications originales de la théorie de l'information, telles que la démonstration de la loi de Zipf, et sur des modèles statistiques financiers.
Paradoxe du littoralLe paradoxe du littoral est l'observation contre-intuitive que le littoral d'une masse continentale n'a pas de longueur définie. Cela résulte des propriétés apparentées à celles d'une courbe fractale des littoraux ; c'est-à-dire le fait qu'un littoral a typiquement une dimension fractale. Bien que le « paradoxe de la longueur » ait été précédemment noté par Hugo Steinhaus, la première étude systématique de ce phénomène est réalisée par Lewis Fry Richardson, et il est développé par Benoît Mandelbrot.
Courbe remplissanteEn analyse mathématique, une courbe remplissante (parfois appelée courbe de remplissage) est une courbe dont l' contient le carré unité entier (ou plus généralement un hypercube de dimension n). En raison du fait que le mathématicien Giuseppe Peano (1858–1932) a été le premier à découvrir dans le plan (en dimension 2) une telle courbe, les courbes remplissantes sont parfois appelées courbes de Peano, mais cette dénomination fait maintenant référence à la courbe de Peano qui désigne cet exemple spécifique de courbe remplissante découvert par Peano.
Courbe de HilbertLa courbe de Hilbert est une courbe continue remplissant un carré. Elle a été décrite pour la première fois par le mathématicien allemand David Hilbert en 1891. Comme elle couvre un carré, sa dimension de Hausdorff et sa dimension topologique sont égales à 2. On la considère cependant comme faisant partie des fractales. La longueur euclidienne de H (la courbe approchée continue obtenue à la n-ième itération) est ; elle croit donc exponentiellement avec n.