Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Distribution de BoltzmannEn physique statistique, la distribution de Boltzmann prédit la fonction de distribution pour le nombre fractionnaire de particules Ni / N occupant un ensemble d'états i qui ont chacun pour énergie Ei : où est la constante de Boltzmann, T est la température (postulée comme étant définie très précisément), est la dégénérescence, ou le nombre d'états d'énergie , N est le nombre total de particules : et Z(T) est appelée fonction de partition, qui peut être considérée comme égale à : D'autre part, pour un systè
Ensemble canoniqueEn physique statistique, l’ensemble (ou situation) canonique est un ensemble statistique introduit par le physicien américain Josiah Willard Gibbs. Il correspond au cas d'un système physique de volume donné et contenant un nombre fixe de particules, en interaction avec un autre système, appelé réservoir ou thermostat, beaucoup plus grand que le système considéré et avec lequel il peut échanger de l'énergie mais pas de matière. Le thermostat se comporte comme un réservoir supposé infini d'énergie, la réunion des deux systèmes étant considérée comme isolée.
Coordonnées généraliséesthumb|Calcul de vecteurs dans un système de coordonnées généralisées cartésien. On appelle coordonnées généralisées d'un système physique un ensemble de variables réelles, qui ne correspondent pas toutes à des coordonnées cartésiennes (par exemple : angles, positions relatives), et permettant de décrire ce système, en particulier dans le cadre de la mécanique lagrangienne. Le terme « généralisées » vient de l'époque où les coordonnées cartésiennes étaient considérées comme étant les coordonnées normales ou naturelles.
Contrainte holonomeEn mécanique analytique, on dit qu'un système de N particules est soumis à une contrainte holonome s'il existe une équation algébrique caractérisant l'état du système, et dont les variables sont les vecteurs coordonnées des particules, pour . On écrit cette contrainte sous la forme . Si les contraintes sont modélisées par un système d'équations de ce type, on parle encore de contraintes holonomes. Une contrainte qui ne peut pas s'écrire sous cette forme est dite non holonome.
Loi de distribution des vitesses de MaxwellEn théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition statistique des vitesses des particules dans un gaz homogène à l'équilibre thermodynamique. Les vecteurs vitesse des particules suivent une loi normale. Cette loi a été établie par James Clerk Maxwell en 1860 et confirmée ultérieurement par Ludwig Boltzmann à partir de bases physiques qui fondent la physique statistique en 1872 et 1877.
Quantum statistical mechanicsQuantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Fonction de partitionEn physique statistique, la fonction de partition Z est une grandeur fondamentale qui englobe les propriétés statistiques d'un système à l'équilibre thermodynamique. C'est une fonction de la température et d'autres paramètres, tels que le volume contenant un gaz par exemple. La plupart des variables thermodynamiques du système, telles que l'énergie totale, l'entropie, l'énergie libre ou la pression peuvent être exprimées avec cette fonction et ses dérivées.