Bruit roseLe bruit rose est un signal aléatoire dont la densité spectrale est constante par bande d'octave. Sa densité spectrale de puissance est inversement proportionnelle à la fréquence du signal. Tandis que le bruit blanc a une énergie spectrale constante sur l'intégralité de l'échelle des fréquences, soit par hertz, le bruit rose possède lui une énergie constante par bande d'octave. Par exemple, avec le bruit rose, la bande d'octave s'étalant de 500 à 1000 hertz contient la même énergie que celle s'étalant de 4000 à 8000 hertz.
Bruit blancthumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Bruit thermiqueLe bruit thermique, également nommé bruit de résistance, bruit Johnson ou bruit de Johnson-Nyquist, est le bruit généré par l'agitation thermique des porteurs de charges, c'est-à-dire des électrons dans une résistance électrique en équilibre thermique. Ce phénomène a lieu indépendamment de toute tension appliquée. Le bruit thermique aux bornes d'une résistance est exprimée par la relation de Nyquist : où est la variance de la tension aux bornes de la résistance, est la constante de Boltzmann, qui vaut kB = 1,3806 × 10-23 J.
Densité spectrale de puissanceOn définit la densité spectrale de puissance (DSP en abrégé, Power Spectral Density ou PSD en anglais) comme étant le carré du module de la transformée de Fourier, divisé par le temps d'intégration, (ou, plus rigoureusement, la limite quand tend vers l'infini de l'espérance mathématique du carré du module de la transformée de Fourier du signal - on parle alors de densité spectrale de puissance moyenne).
Quantité de mouvementEn physique, la quantité de mouvement est le produit de la masse par le vecteur vitesse d'un corps matériel supposé ponctuel. Il s'agit donc d'une grandeur vectorielle, définie par , qui dépend du référentiel d'étude. Par additivité, il est possible de définir la quantité de mouvement d'un corps non ponctuel (ou système matériel), dont il est possible de démontrer qu'elle est égale à la quantité de mouvement de son centre d'inertie affecté de la masse totale du système, soit (C étant le centre d'inertie du système).
Espace des positions et espace des momentsEn physique et en géométrie, espace des positions et espace des moments sont deux espaces vectoriels étroitement liés, souvent tridimensionnels, mais en général pouvant être de toute dimension finie. L'espace des positions (également espace réel ou espace des coordonnées) est l'ensemble de tous les vecteurs de position , qui ont les dimensions d'une longueur ; un vecteur de position définit un point dans l'espace (si le vecteur position d'une particule ponctuelle varie avec le temps, il tracera un chemin, la trajectoire d'une particule).
Quadri-momentEn relativité restreinte, le quadri-moment (ou quadrivecteur impulsion ou quadri-impulsion ou quadrivecteur impulsion-énergie ou quadrivecteur énergie-impulsion) est une généralisation du moment linéaire tridimensionnel de la physique classique sous la forme d'un quadrivecteur de l'espace de Minkowski, espace-temps à 4 dimensions de la relativité restreinte. Le quadri-moment d'une particule combine le moment tridimensionnel et d'énergie : Comme tout quadrivecteur, il est covariant, c'est-à-dire que les changements de ses coordonnées lors d'un changement de référentiel inertiel se calculent à l'aide des transformations de Lorentz.
Théorie de la fonctionnelle de la densitéLa théorie de la fonctionnelle de la densité (DFT, sigle pour Density Functional Theory) est une méthode de calcul quantique permettant l'étude de la structure électronique, en principe de manière exacte. Au début du , il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines.